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Mendelian randomization analysis: exploring  
the causal relationship between menstrual cycle length 
and bone mineral density
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Osteoporosis (OP) arises from an imbalance between bone resorption 
and formation, leading to diminished bone mass and weakened bone 
structure [1]. It is the most prevalent bone ailment globally, with over 
37.5 million individuals affected in the European Union (EU) and the 
United States of America (USA) alone by 2010 [2]. Particularly prevalent 
among postmenopausal women, nearly one in three women over the age 
of 50 are afflicted by this condition. Therefore, it is essential to recognize 
potential factors that could impact the onset of OP, and further research 
into the pathogenesis, prevention, and treatment principles of OP holds 
significant medical and social value.

Menstrual cyclicity serves as a  visible indicator of both health and 
fertility. The length of the menstrual cycle refers to the duration between 
the initial day of menstrual bleeding in one cycle and the commence-
ment of menses in the subsequent cycle [3]. Typically, the median dura-
tion of a menstrual cycle is 28 days, with most cycles between 25 and  
30 days [4]. Individuals experiencing menstrual cycles lasting fewer than 
21 days are categorized as polymenorrheic, while those with cycles last-
ing longer than 35 days are termed oligomenorrheic. Studies indicate 
that the menstrual cycle entails consistent, cyclic variations in estrogen 
and progesterone levels, and these hormones are pivotal in bone metab-
olism, remodeling, and BMD [5, 6].

Mendelian randomization (MR) offers a risk-free method for examin-
ing causal effects. It functions as an analytical method that uses genetic 
traits as instrumental variables (IVs) to explore causal relationships be-
tween exposure and result [7]. Our aim was to explore the association 
between menstrual cycle length and BMD, and to substantiate this rela-
tionship through a two-sample MR analysis.

Methods. Study design. This study strictly adhered to the three as-
sumptions of MR analysis: (1) The selected IVs were related to the ex-
posure. (2) IVs were not associated with any confounding factors. (3) IVs 
can influence outcomes solely through the exposure. All datasets uti-
lized in this study are openly accessible. Leveraging these premises, we 
proceeded to estimate the causal association between menstrual cycle 
length and total body BMD (TB-BMD), lumbar spine BMD (LS-BMD), fem-
oral neck BMD (FN-BMD), and TB-BMD 0–15 years, TB-BMD 15–30 years, 
TB-BMD 30–45 years, TB-BMD 45–60 years, and TB-BMD over 60 years.

GWAS Summary Data. The UK Biobank provided the GWAS summa-
ry statistics for the menstrual cycle length (ukb-b-3278) (http://www.
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nealelab.is/uk-biobank). The data provide bone 
density measurements for the total body, lum-
bar spine and femoral neck with sample sizes of 
56,284 (TB-BMD), 28,498 (LS-BMD) and 32,735 
(FN-BMD). Furthermore, TB-BMD data across five 
age groups (0–15 years: n = 11,807 cases; 15–30 
years: n = 4,180 cases; 30–45 years: n = 10,062 
cases; 45–60 years: n = 18,805 cases; over 60 
years: n = 22,504 cases) were also downloaded 
from MRC-IEU [8] (http://www.bristol.ac.uk/inte-
grative-epidemiology/).

Instrument selection. We established consistent 
filtering criteria for the tool variables, with statisti-
cal significance indicated by p < 5 × 10−8. Linkage 
disequilibrium analysis of the corresponding SNPs 
was conducted for each instrumental variable. 
We enforced a  threshold of r2 < 0.001 and kb = 
10000. Additionally, we eliminated SNPs that were 
directly related to OP as well as those that were 
connected to confounding variables related to OP. 
Furthermore, we carried out extra screening of the 
retrieved SNPs to weed out those with palindromic 
SNPs displaying unclear strands and non-concor-
dant alleles. These rigorously selected SNPs were 
designated as IVs for subsequent MR analysis. 
Lastly, the chosen instrumental SNPs ought to 
show robust correlations with the exposure vari-
able, in line with the MR analysis’s underlying as-
sumptions. SNPs with inadequate statistical power 
(F  < 10) were excluded. We calculated the F statis-
tic using the formula: (F = R2(n – k – 1)/k(1 – R2).

R2 represents the proportion of exposure vari-
ance explained by IVs, where k denotes the num-
ber of IVs used in the model, and n represents the 
sample size [9].

Statistical analysis. The random effects IVW 
approach was used for the primary study. Addi-
tional methodologies such as MR-Egger, weighted 
median, simple mode, and weighted mode were 
utilized in order to examine the causal associa-
tion. For sensitivity analysis, we then utilized the 
Cochran’s Q test as a heterogeneity test, and the 
intercept from MR-Egger regression was employed 
to assess the pleiotropy of MR results. Additional-
ly, leave-one-out tests were performed to deter-
mine whether single nucleotide polymorphisms 
altered MR results. All analyses were performed 
using the TwoSampleMR R package (version 0.5.5) 
for Mendelian randomization. A significance level 
of p < 0.05 was considered statistically significant.

Results. Selection of instrumental variables. 
A summary of the GWAS data was used to choose 
qualifying SNPs. Afterward, a cumulative set of 8 
SNPs was eventually incorporated into the fur-
ther analysis, exploring the correlation between 
menstrual cycle length and TB-BMD, LS-BMD, FN-
BMD, as well as TB-BMD across various age inter-
vals (0–15, 15–30, 30–45, 45–60, and over 60).  

The F statistics > 10, suggesting that weak instru-
mental bias may not have been substantial in our 
study.

MR analysis for causal link of menstrual cycle 
length with BMD. Utilizing Mendelian randomiza-
tion, we investigated the associations between 
menstrual cycle length and BMD. The results of 
these methods are presented in Table I. In the 
analysis, the IVW method demonstrated that the 
genetically predicted menstrual cycle length was 
negatively associated with the level of BMD (TB-
BMD: β = –0.207, 95% CI: [–0.323, –0.091], p < 
0.001; LS-BMD: β = –0.140, 95% CI = [–0.267, 
–0.023], p = 0.031; FN-BMD: β = –0.154, 95% CI 
= [–0.280, –0.027], p = 0.002) in initial practice.

In the causal analysis of menstrual cycle length 
and TB-BMD across five age groups, a significant 
causal negative relationship was found between 
menstrual cycle length and TB-BMD in the age 
groups 45–60 and over 60 years. However, no sig-
nificant causal relationship was found for TB-BMD 
in the age groups 0–15 years, 15–30 years, and 
30–45 years. The IVW method demonstrated the 
following results: TB-BMD 0–15 years: β = –0.011, 
95% CI: [–0.324, 0.125], p = 0.385; TB-BMD 15–30 
years: β = –0.158, 95% CI: [–0.639, 0.323], p = 
0.520; TB-BMD 30–45 years: β = –0.311, 95% CI: 
[–0.660, 0.038], p = 0.080; TB-BMD 45–60 years: 
β = –0.374, 95% CI = [–0.533, –0.215], p < 0.001;  
TB-BMD over 60 years: β = –0.134, 95% CI = 
[–0.273, 0.005], p = 0.053.

Sensitivity analyses for causal link of menstrual 
cycle length with BMD. Refer to Table II for specifics. 
With the exception of TB-BMD 15–30 and TB-BMD 
30–45, the Cochran’s Q statistic from both MR-
Egger and IVW methods revealed no noteworthy 
heterogeneity among the instrumental variables.

For TB-BMD 15–30 years: IVW, p = 0.034;  
MR-Egger, p = 0.047; MR-Egger intercept = 0.031,  
p = 0.331; and TB-BMD 30–45 years: IVW, p = 0.008; 
MR-Egger, p = 0.004. Despite observing heteroge-
neity in some of the results tested with Cochran’s 
Q test, since we used random effects IVW as the 
main outcome, the level of heterogeneity is accept-
able and does not undermine the MR estimates in 
the present study. Furthermore, the results remain 
non-significant in leave-one-out sensitivity analy-
ses (Figure 1). Furthermore, no evidence of hori-
zontal pleiotropy was observed in these findings 
(p > 0.05), suggesting that the results were not in-
fluenced by potential confounding pathways, thus 
affirming their validity and robustness.

Discussion. Our research established a causal 
link between the length of the menstrual cycle 
and BMD, encompassing TB-BMD, LS-BMD, and 
FN-BMD across five different age groups. During 
the analysis, the IVW method revealed a negative 
association between menstrual cycle length and 

http://www.bristol.ac.uk/integrative-epidemiology/
http://www.bristol.ac.uk/integrative-epidemiology/
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Table I. MR estimates from different methods for assessing the causal effect of menstrual cycle length on BMD 
by site

Exposure Outcome SNP Method Beta 95% CI P-value

Length of 
menstrual 
cycle

TB-BMD 8 MR-Egger –0.362 (–0.613, –0.113) 0.03

Weighted median –0.230 (–0.337, –0.124) < 0.001

Inverse variance weighted –0.207 (–0.323, –0.091) < 0.001

Simple mode –0.159 (–0.341, –0.024) 0.133

Weighted mode –0.237 (–0.355, –0.121) 0.006

LS-BMD 8 MR-Egger –0.254 (–0.551, 0.042) 0.143

Weighted median –0.226 (–0.389, –0.063) 0.007

Inverse variance weighted –0.140 (–0.267, –0.013) 0.031

Simple mode 0.060 (–0.263, –0.383) 0.726

Weighted mode –0.231 (–0.418, –0.045) 0.045

FN-BMD 8 MR-Egger –0.237 (–0.541, –0.066) 0.176

Weighted median –0.157 (–0.298, –0.016) 0.029

Inverse variance weighted –0.154 (–0.280, –0.027) 0.017

Simple mode –0.058 (–0.332, 0.216) 0.691

Weighted mode –0.161 (–0.331, 0.009) 0.106

TB-BMD (0–15) 8 MR-Egger –0.111 (–0.752, 0.352) 0.504

Weighted median –0.129 (–0.378, 0.121) 0.310 

Inverse variance weighted –0.011 (–0.324, 0.125) 0.385

Simple mode –0.228 (–0.598, 0.142) 0.266

Weighted mode –0.135 (–0.411, 0.139) 0.366

TB-BMD (15–30) 8 MR-Egger –0.684 (–1.769, 0.400) 0.263

Weighted median –0.401 (–0.821, 0.019) 0.0613

Inverse variance weighted –0.158 (–0.639, 0.323) 0.52

Simple mode –0.221 (–0.896, 0.454) 0.542

Weighted mode –0.367 (–0.808, 0.075) 0.148

TB-BMD (30–45) 8 MR-Egger –0.411 (–1.266, 0.443) 0.382

Weighted median –0.304 (–0.580, –0.286) 0.03

Inverse variance weighted –0.311 (–0.660, 0.038) 0.08

Simple mode –0.158 (–0.717, 0.400) 0.596

Weighted mode –0.306 (–0.637, 0.246) 0.113 

TB-BMD (45–60) 8 MR-Egger –0.477 (–0.855, –0.098) 0.049

Weighted median –0.385 (–0.590, –0.179) < 0.001

Inverse variance weighted –0.374 (–0.533, –0.215) < 0.001

Simple mode –0.384 (–0.724, –0.045) 0.062

Weighted mode –0.311 (–0.618, –0.182) 0.009

TB-BMD (over 60) 8 MR-Egger –0.201 (–0.518, 0.116) 0.260 

Weighted median –0.143 (–0.326, 0.040) 0.127

Inverse variance weighted –0.134 (–0.273, 0.005) 0.05

Simple mode –0.081 (–0.347, 0.187) 0.576

Weighted mode –0.155 (–0.364, 0.054) 0.19

BMD – bone mineral density, TB-BMD – total body BMD, LS-BMD – L-lumbar spine BMD, FN-BMD – femoral neck BMD, SNP – single 
nucleotide polymorphism, CI – confidence interval.

BMD level in initial practice. In the causal analysis 
of menstrual cycle length and age-stratified BMD, 
a notable negative causal relationship was identi-
fied between menstrual cycle length and TB-BMD 
in age groups 45–60 and over 60 years, but no sig-

nificant causal relationship was found for TB-BMD 
in the age groups 0–15, 15–30, and 30–45.

Numerous studies have investigated the re-
lationship between the length of the menstrual 
cycle and BMD or OP [10–12]. Several studies gen-
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Table II. Sensitivity analysis of the MR results for exposures and outcomes

Exposure Outcome Pleiotropy test Heterogeneity test

MR-Egger MR-Egger IVW

Intercept SE P-value Q Q_pval Q Q_pval

Menstrual 
cycle 
length

TB-BMD 0.009 0.029 0.223 10.759 0.096 14.073 0.059

LS-BMD 0.007 0.008 0.432 6.506 0.369 7.273 0.401

FN-BMD 0.005 0.008 0.57 9.131 0.166 9.679 0.207

TB-BMD (0–15) 0.006 0.015 0.706 9.835 0.132 10.091 0.183

TB-BMD (15–30) 0.031 0.029 0.331 12.749 0.047 15.131 0.034

TB-BMD (30–45) 0.006 0.023 0.807 18.881 0.004 19.087 0.008

TB-BMD (45–60) 0.006 0.01 0.576 7.169 0.37 7.587 0.305

TB-BMD (over 60) 0.004 0.009 0.66 1.714 0.944 1.928 0.964

BMD – bone mineral density, TB-BMD – total body BMD, LS-BMD – lumbar spine BMD, FN-BMD – femoral neck BMD, SE – standard error, 
IVW – inverse variance weighted.

erally align with our study results, where partici-
pants reported their usual patterns of menstrual 
cycle regularity and length. Exclusions were made 
for periods of pregnancy, lactation, or contracep-
tive use in these studies. A study has shown that 
women in perimenopause experience a  higher 
rate of bone loss in the spine and femoral neck 
compared to those in early menopause and pre-
menopause. Irregular menstrual cycles, char-
acterized by lengthening cycles, contribute to 
a  decline in total body, spine, and femoral neck 
BMD approximately 2 years before the onset of 
the last menstrual period [13]. A  questionnaire 
survey conducted in China on women aged 40–
80 also discovered a  close relationship between 
menstrual cycle length and the prevalence of OP. 
The survey demonstrated a  negative correlation 
between the menstrual cycle length and the prev-
alence of OP [12]. Among individuals aged 35–39, 
cycle length variability was minimal, but it nota-
bly increased in those aged 45–49 and 50 years 
and older [14]. Specifically, the prevalence of OP 
is the highest when the menstrual cycle is ≥ 29 

days. Recker pointed out that abnormal menstrual 
cycles can lead to a 0.5% decrease in bone density 
in the femoral neck and a 0.6% decrease in overall 
mineral content [6].

Perimenopause, often referred to as the meno-
pausal transition, delineates the several-year 
phase preceding an individual’s final menstrual 
period and is typified by escalating variability in 
menstrual cycle length. Studies by Parker SE and 
others [15] have shown that bone loss acceler-
ates threefold in the immediate postmenopausal 
period, with losses observed at all sites during 
the ages of 50–59. However, our study did not 
reveal any causal relationships between TB-BMD 
and age groups 0–15, 15–30, and 30–45 years. 
Similarly, in a  large cross-sectional study involv-
ing 963 healthy women aged 19–35 years, no 
significant association was found between men-
strual status and BMD [16]. LI et al. found [14] 
that the average menstrual cycle length decreas-
es with age across all age groups until reaching 
age 50, after which it begins to increase for those 
aged 50 and older.

Figure 1. Leave-one-out sensitivity analysis plot for SNP effects on the relationship between length of menstrual 
cycle and BMD. A – Length of menstrual cycle on TB-BMD. B – Length of menstrual cycle on LS-BMD
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Figure 1. Cont. C – Length of menstrual cycle on FN-BMD. D – Length of menstrual cycle on TB-BMD (0–15).  
E – Length of menstrual cycle on TB-BMD (15–30). F – Length of menstrual cycle on TB-BMD (35–40). G – Length of 
menstrual cycle on TB-BMD (45–60). H – Length of menstrual cycle on TB-BMD (over 60)
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Irregular and long menstrual cycles, which af-
fect approximately 20% of women, are often at-
tributed to disruptions in the hypothalamic-pitu-
itary-ovarian axis among women of reproductive 
age. Estrogen has a crucial role in the connection 
between menstruation and BMD or OP [17]. Re-
search has demonstrated a  correlation between 
decreased bone mass and both extended follic-

ular phases and decreased estrogen production 
[18]. Reduced plasma estradiol levels have been 
linked to lower bone density and an increased 
risk of osteopenia or OP in women with oligo-
menorrhea, which is characterized by infrequent 
menstruation, usually defined as cycles occurring 
35–40 days apart [19]. Additionally, according to 
research findings [18], there is a  correlation be-
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tween increased bone production and decreased 
bone resorption during the preovulatory and lu-
teal periods, when estrogen levels rise. BMD de-
clines significantly during late perimenopause and 
continues at a comparable rate through the early 
postmenopausal period [20]. In addition to the 
impact of decreased estrogen levels, current evi-
dence suggests that bone loss during menopause 
may also be associated with increased serum fol-
licle-stimulating hormone (FSH). Elevated FSH lev-
els can stimulate osteoclastogenesis, promoting 
bone resorption through osteoclast activity [21]. 
Our research revealed that the chance of BMD 
loss increased with the length of the menstrual 
cycle. Longer menstrual cycles are frequently as-
sociated with prolonged follicular phases, delayed 
estrogen peaks, and lower mean estrogen levels 
across the whole cycle [10]. This may also relate 
to FSH levels, potentially explaining the negative 
correlation between menstrual cycle length and 
BMD. An increasing body of evidence demon-
strated that female bone metabolism is also sig-
nificantly influenced by later menarche, a shorter 
time from menarche to menopause, and a high-
er number of births [22]. During pregnancy, the 
developing fetus relies solely on maternal bone 
minerals for calcium, challenging maternal BMD. 
To counteract this fetal-induced bone loss, the 
maternal body adapts by doubling intestinal calci-
um absorption. Research in this area has primar-
ily concentrated on parity [23]. A  cross-sectional 
study in Korean women revealed that having more 
children increases the risk of fractures related to 
osteoporosis [24]. Moreover, comparing data be-
tween studies is complicated by inconsistent defi-
nitions of normal, short, or long menstrual cycle 
(e.g., long menstrual cycle being ≥ 32 days [25] vs. 
> 45 days [26]) and variability in menstrual cycle 
length. Hence, additional investigation is warrant-
ed to elucidate the physiological mechanisms un-
derlying these alterations.

The MR study has a  number of advantages. 
Firstly, in this study, MR analysis was implement-
ed to elucidate the connection, offering fresh in-
sights into both the influence of menstrual cycle 
length on BMD and the early prevention of OP. 
To the best of our knowledge, this is the first MR 
study to evaluate the link between menstrual cy-
cle length and BMD. Secondly, this study signifies 
a groundbreaking endeavor in exploring the cor-
relation between menstrual cycle length and BMD 
by employing MR analyses, thereby expanding the 
horizon beyond conventional observational stud-
ies. However, despite these strengths, our study 
also had some limitations. Firstly, it is important to 
note that certain participants in the BMD GWAS 
did not solely represent individuals of European 
ancestry. This raises concerns regarding the reli-

ability of our findings, as allele frequencies can 
vary significantly across different populations. 
Secondly, we acknowledge the limitations regard-
ing demographic details such as childbirth history, 
occupation, and exposure to stress factors, which 
are not fully detailed in the current dataset.

In conclusion, this MR study provides valuable 
insights into the link between prolonged menstru-
al cycle length and decreased BMD. Our findings 
hold significance for clinical practice, suggesting 
that identifying abnormal menstrual patterns 
could facilitate the early detection of declining 
bone density. Such detection may enable timely 
interventions to prevent OP and promote overall 
bone health. As such, our study has important im-
plications for both clinical management and public 
health strategies.
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