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 Abstract
Introduction
To identify the key risk factors influencing in-ICU mortality of patients with sepsis and develop
prognosis prediction models for patients with culture-positive sepsis (CPS) and culture-negative sepsis
(CNS) patients.

Material and methods
Data were extracted from the MIMIC-IV database, which included 9288 patients with sepsis. The
whole sample was divided into CPS (6622 patients) and CNS groups (2666 patients). We established
six machine learning models, including DT, RF, NB, XGB, GBDT and NNET, to predict in-ICU death
for all study samples, CPS and CNS subgroups, respectively. Model performance were assessed
using AUC, accuracy, sensitivity, and specificity. SHAP values were used to explain the effect of
variables on model results.

Results
The in-ICU mortality rate was 54.58% for the whole study sample, the difference in in-ICU mortality
between the CPS (55.19%) and CNS (53.04%) groups was not statistically significant. Main Significant
influential factors identified included Charlson comorbidity index (CCI), number of days in hospital,
Glasgow Coma Scale (GCS), older age, total bilirubin (TBil). The XGB model performed best in the
overall sample (AUC = 0.782), while the GBDT model was most effective for the CPS group (AUC =
0.7813) and the CNS group (AUC = 0.7582).

Conclusions
This study identified key risk factors for in-ICU death in patients with sepsis and highlights differences
in clinical characteristics between patients with CPS and CNS. These findings may contribute to the
development of personalized treatment strategies and risk assessment, thereby improving the
prognosis of septic patients, especially patients with CNS.Prep
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Abstract 

Aim: To identify the key risk factors influencing in-ICU mortality of patients with sepsis and develop 

prognosis prediction models for patients with culture-positive sepsis (CPS) and culture-negative 

sepsis (CNS) patients.  

Methods: Data were extracted from the MIMIC-IV database, which included 9288 patients with 

sepsis. The whole sample was divided into CPS (6622 patients) and CNS groups (2666 patients). We 

established six machine learning models, including DT, RF, NB, XGB, GBDT and NNET, to predict in-

ICU death for all study samples, CPS and CNS subgroups, respectively. Model performance were 

assessed using AUC, accuracy, sensitivity, and specificity. SHapley Additive exPlanations (SHAP) 

values were used to explain the effect of variables on model results.  

Results: The in-ICU mortality rate was 54.58% for the whole study sample, the difference in in-ICU 

mortality between the CPS (55.19%) and CNS (53.04%) groups was not statistically significant. Main 

Significant influential factors identified included Charlson comorbidity index (CCI), number of days 

in hospital, Glasgow Coma Scale (GCS), older age, total bilirubin (TBil). The XGB model performed 

best in the overall sample (AUC = 0.782), while the GBDT model was most effective for the CPS 

group (AUC = 0.7813) and the CNS group (AUC = 0.7582).  

Conclusion: This study identified key risk factors for in-ICU death in patients with sepsis and 

highlights differences in clinical characteristics between patients with CPS and CNS. These findings 

may contribute to the development of personalized treatment strategies and risk assessment, 

thereby improving the prognosis of septic patients, especially patients with CNS. 
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1. Introduction 

Sepsis is a life-threatening condition characterized by organ dysfunction resulting from a 

dysregulated host response to infection[1]. It remains a major public health challenge and is a 

leading cause of mortality among critically ill patients in the ICU[2]. Sepsis affects more than 19 

million people worldwide each year, with a persistently high mortality rate[3]. Effective prognosis 

improvement can be achieved by accurately identifying the pathogen and administering targeted 

antibiotics[4]. Rapid microbiological techniques, such as blood culture, play a crucial role in 

identifying sepsis pathogens[5]. These results can guide timely adjustments to antimicrobial 

therapies, enhancing patient outcomes, reducing hospital stays, and minimizing healthcare costs[5]. 

 

Most sepsis cases are found to have bacterial origins, according to existing studies[6]. Blood cultures 

are used to distinguish between CPS and CNS sepsis, based on pathogen detection within 24 hours 

before or after ICU admission[7]. CNS refers to sepsis cases where no causative organism is detected 

within this time frame, while CPS indicates the presence of identifiable pathogens[1]. The 

relationship between blood culture results and patient prognosis is debated, with mixed 

conclusions in current literature[2]. Kim et al. suggest a possible association between culture-

negative sepsis and organ dysfunction, although the data does not indicate a significant link 

between blood culture results and sepsis mortality[8]. Conversely, Hazwani et al. reported lower 

mortality rates and reduced organ dysfunction among culture-negative sepsis patients[9]. 

Meanwhile, Alexandra et al. found that patients in the CPS and CNS groups exhibited similar 

symptoms upon admission and received comparable treatments[10]. 

 

Among existing studies, sepsis research predominantly focuses on CPS, with fewer investigations 

into CNS. However, CNS comprises 28-49% of sepsis cases[8], making it a significant subset. Due to 

the absence of clear pathogenic diagnoses, CNS patients often miss out on targeted antibiotic 

treatments, potentially resulting in higher morbidity, mortality, and prolonged hospital stays[11,12]. 

Additionally, the empirical use of broad-spectrum antibiotics for CNS patients can elevate the risk 

of antibiotic resistance and complicate treatment[11]. CNS cases may involve diverse pathogens 

such as viruses, fungi, and parasites or even non-infectious factors like autoimmune disorders and 

drug reactions[1]. Understanding the prognosis and underlying factors of CNS can shed light on 

sepsis etiology and mechanisms, paving the way for broader therapeutic strategies and improved 

patient management. 
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Several factors influence ICU mortality in sepsis patients, with blood culture results being just one 

aspect【1】. Accurate prediction of high-risk patients can aid clinicians in assessing disease severity, 

optimizing treatment, and reducing poor outcomes【3】. In recent years, machine learning (ML) 

has been increasingly applied to sepsis research[13]. Persson et al. developed a high-performing ML 

algorithm for sepsis prediction using routine ICU data[14], while Yao et al. demonstrated that the 

XGB model excelled at predicting in-hospital mortality for postoperative sepsis patients[15]. Zhou et 

al. created an ML-based mortality prediction model for S-AKI patients, with the CatBoost model 

showing the best predictive results[16]. Yang et al. highlighted the superior predictive performance 

of XGB and random forest models for predicting sepsis onset[17]. 

 

Identifying high-risk subgroups is essential for managing CPS and CNS patients and improving their 

prognosis, with machine learning playing a key role in this process[14-17]. However, existing models 

have limitations, as most research focuses on CPS, with limited analysis of ICU mortality risk factors 

in CNS patients. This gap exists for several reasons. First, identifying the infection source is more 

straightforward in CPS, while it is often challenging in CNS cases[11,12]. Second, positive bacterial 

cultures provide reliable results, whereas negative cultures can be affected by factors like improper 

sampling or prior antibiotic use[1]. Consequently, CNS studies are more complex and may yield less 

consistent conclusions compared to CPS. Additionally, CPS treatment is more targeted, whereas 

CNS patients typically receive broad-spectrum antibiotics based on clinical judgment[1]. Lastly, CNS 

patients are more heterogeneous due to the involvement of various pathogens or non-infectious 

causes, complicating their analysis and treatment. 

 

Given these limitations in mortality prediction for sepsis patients and the potential of machine 

learning in healthcare, there is a pressing need to develop predictive models that evaluate risk 

factors for both CPS and CNS patients. This study aims to identify in-ICU mortality risk factors, 

compare the prognostic differences between CPS and CNS patients, and create predictive models 

using machine learning techniques. 

 

2 Methods and Materials 

2.1 Sources of Data 

This study was conducted based on clinical records of sepsis patients who meet the diagnostic 

criteria of the Sepsis-3 definition obtained from the Medical Information Mart for Intensive Care 

database-IV version 0.4 (MIMIC-IV v0.4) database. The MIMIC-IV database is a freely accessible 

critical care database released by the Laboratory for Computational Physiology at the 

Massachusetts Institute of Technology[18]. Detailed descriptions of this database are available in 

existing literature [18]. 
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2.2 Study Population 

In this study, sepsis was defined according to The Third International Consensus Definitions[1]. The 

selection of study samples was based on the following inclusion and exclusion criterion. 

Inclusion Criteria: (1) Patients diagnosed with sepsis: diagnosed according to the Sepsis 3.0 criteria, 

i.e., infection + Sequential Organ Failure Assessment (SOFA) score ≥ 2, or patients diagnosed with 

sepsis in discharge diagnosis according to ICD-9.0; (2) Age ≥ 18 years old; (3) Stayed in ICU for more 

than 24 hours; (4) Microbial cultures performed within 24 hours before and after ICU admission. 

Exclusion Criteria: (1) Patients diagnosed with sepsis after 24 hours of ICU admission; (2) Patients 

with multiple ICU admissions were only included based on their first ICU admission information; 

(3) Patients with microbial culture results indicating fungal or viral infections were excluded. 

A total of 9350 patients from MIMIC-IV met the inclusion and exclusion criteria. Among them, 62 

patients lacked information on ICU ward type and were excluded. Consequently, a total of 9288 

patients were included in the study, with 6622 cases (71.30%) in the CPS group and 2666 cases 

(28.70%) in the CNS group. (Figure 1) 

 

Figure1. Study design. AUC : area under the curve.  

 

2.3 Study Outcome 

The primary outcome event of this study, based on its significance, is in-ICU death of the selected 
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septic patients. 

 

2.4 Data Pre-Processing 

Variables with ≥ 30% missingness were excluded from the analysis due to high missingness. 

Multiple imputation was performed on the remaining missing variables. To further validate the 

robustness of the interpolation method, we use the “mice” package nested in the R programming 

language to generate five interpolation datasets using the multiple interpolation technique for 

variables containing missing values, and train the machine learning model on each of the 

interpolation datasets separately to obtain the prediction results. And then integrate the 

interpolated datasets using the pool function to achieve the final analyzing dataset. Multiple 

interpolation effectively reduces the error due to missing data by generating multiple datasets and 

integrating the interpolation uncertainty. We also transformed the continuous factor age in the 

database into an ordered factor age group. We recorded all cases that had received vasopressin or 

ventilation or dialysis as 1. (The filtered variables and variable missingness rates are shown in 

Supplementary Table S1) 

 

2.5 Variable Selection 

To capture a broader range of variables associated with in-ICU death in the analysis, the following 

steps were taken. Firstly, We used three methods for factor screening in the training set[19], 

combining their results: (a) Univariate logistic regression (LR): Each factor was analyzed individually, 

and factors with a two-tailed P < 0.05 were selected. (b) Elastic net regression: This regularized 

method optimized model complexity to identify important, sparse sets of factors[20]. (c) Random 

forest: Feature importance was assessed using the Gini index to measure the contribution of each 

factor. Secondly, we fit a multifactorial logistic regression model with the selected variables. Then, 

the variables with P < 0.05 in multifactorial logistic regression were screened in conjunction with 

clinical significance. In addition, the above steps of screening variables were repeatedly conducted 

for the whole study sample, as well as the CPS and CNS subgroups. Finally, the valid variables 

identified from the overall sample, CPS group, and CNS group were input into the corresponding 

six machine learning models for each group. 

 

2.6 Statistical Analysis 

Descriptive analysis was performed on all included patients. Continuous variables conforming to a 

normal distribution were described using means ± standard deviations (SD). Skewed continuous 

variables were described using medians (interquartile ranges), and categorical variables were 

described using frequencies (proportions).  
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The datasets for the overall sample, CPS and CNS were randomly sampled using the R programming 

language, and all were randomly divided into a training set and a test set in a ratio of 7:3. The 

training sets were used for selecting variables and building models, and the test sets were used for 

validation. 

 

Six machine learning methods including Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), 

Extreme gradient boosting (XGB), Gradient Boosted Decision Trees (GBDT), and Neural Network 

(NNET) models were employed to establish predict models. The training and testing process 

involves 5-fold cross-validation. Subsequently, the accuracy, sensitivity, specificity, and area under 

the curve (AUC) of the receiver operating characteristic (ROC) curve were compared across the 

models to evaluate their performance and identify the optimized model for predicting in-ICU 

mortality of septic patients. In order to compensate for the lack of machine learning algorithms in 

variable interpretation, we use the SHAP to explain the importance of each feature in the best 

model.  

 

All statistical analyses were conducted using R-programming language (version 4.3.3, the R 

Foundation, Vienna, Austria) and R Studio software (version 2023.12.1.402,R Studio, PBC, Boston, 

MA), with R packages including "tidyverse", "mice", "rpart", "dplyr", "randomForest", "e1071", 

"XGB", "gbm", "nnet", and "shapr". Statistical significance was decided at a two-sided p-value less 

than 0.05. 

 

3 Results 

 

3.1 Baseline Characteristics 

This study included 9288 study participants and 43 variables, covering basic demographic 

informations, laboratory indicators, and comorbidities. Baseline clinical characteristics included 

ICU ward type, number of days in ICU, pulse, heart rate, temperature, systolic blood pressure, 

diastolic blood pressure, hemoglobin (Hb), white blood cell (WBC) count, platelet (PLT) count, CCI, 

SOFA score, SAPSII, etc. Additionally, comorbidities such as diabetes, liver disease, chronic 

obstructive pulmonary disease, etc., were also incorporated.  

 

Among the 9288 patients included in the study, 5069 patients died in ICU, with a mortality rate of 

54.58%. The CPS group comprised 6622 individuals, among whom 3655 died in ICU, resulting in a 

mortality rate of 55.19%. The CNS group consisted of 2666 individuals, with 1414 deaths in ICU, 

yielding a mortality rate of 53.04%. 

The majority of participants were in the age group of 45 to 79 years, accounting for 65.20%. There 
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was a slightly different proportion between males and females in the study population, with 57.55% 

being male and 42.45% female. The majority of patients were of white ethnicity. Chronic lung 

disease was the most common comorbidity, with 1866 out of 9288 septic patients affected, 

representing 30.60%. This was followed by hypertension and liver disease, accounting for 23.41% 

and 8.5%, respectively. Selected features of included patients are shown in Table 1. This table 

compares the baseline characteristics of CPS and CNS sepsis patient subgroups in the ICU. Key 

differences were observed in age distribution, ethnicity, and ICU ward type, with statistically 

significant variations (p < 0.05). Severity scores (SOFA, SAPSII) were generally higher for CPS 

patients, indicating greater illness severity (p < 0.01). CNS patients showed slightly lower mortality 

rates and were more likely to be in certain ICU wards like CCU and TSICU. Both groups had similar 

comorbidity patterns, but CPS patients required more vasopressin treatment (p < 0.01). Lengths of 

hospital stay were also significantly different between the groups (p < 0.01). 

 

Table 1 Comparison of baseline characteristics between the two subgroups in ICU 

Variables CPS group(N=6622) CNS group(N=2666) Z/χ2 P value 

age 65.48±16.34 65.52±16.63 73.38  0.53  

age group/(n,%)   11.47  0.04 

18～25 98 (1.48) 56 (2.1)   

26～44 656 (9.91) 277 (10.39)   

45～64 2307 (34.84) 862 (32.33)   

65～79 2042 (30.84) 845 (31.7)   

80～85 740 (11.17) 328 (12.3)   

＞85 779 (11.76) 298 (11.18)   

Male/(n,%) 3802(57.41) 1543(57.88) 0.15  0.70 

Ethnicity/(n,%)   26.15  ＜0.01 

ASIAN 217 (3.28) 52 (1.95)   

BLACK 739 (11.16) 277 (10.39)   

WHITE 4379 (66.13) 1744 (65.42)   

OTHER 1287 (19.44) 593 (22.24)   

ICU ward type/(n,%)   212.31  ＜0.01 

CCU 518 (7.82) 335 (12.57)   

CVICU 469 (7.08) 310 (11.63)   

MICU 2115 (31.94) 629 (23.59)   

MICU/SICU 1781 (26.9) 524 (19.65)   

SICU 940(14.20) 429 (16.09)   
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Neuro SICU 129(1.95) 83(3.11)   

TSICU 670(10.12) 356(13.35)   

Severity score/(Md[IQR])     

SOFA 7.73 (3.72, 11.75) 7.04 (3.29, 10.8) 82.83  ＜0.01 

SAPSII 42.35 (27.62, 57.07) 40.27 (26.22, 54.31) 80.92  ＜0.01 

CCI 6.17 (3.26, 9.09) 6.06 (3.09, 9.04) 76.79 0.15  

Comorbidity/(n,%)     

chronic pulmonary disease 2067 (31.21) 775 (29.07) 4.02  0.05 

liver disease 571 (8.62) 218 (8.18) 0.43  0.51 

diabetes 271 (4.09) 97 (3.64) 0.91  0.34 

hypertension 1554 (23.47) 620 (23.26) 0.04  0.85 

Treatment measures/(n,%)     

ventilation 4369 (65.98) 1740 (65.27) 0.40  0.53 

dialysis 494 (7.46) 180 (6.75) 1.33  0.25 

vasopressin 1083 (16.35) 362 (13.58) 10.94  ＜0.01 

Number of days/(d[IQR])     

Number of days in hospital 17.2 (0.4, 34.01) 16.07 (0.21, 31.93) 78.28  ＜0.01 

Number of days in ICU 7.4 (-0.95, 15.75) 7.63 (-0.92, 16.17) 74.11 0.22  

Outcome/(n,%)     

deaths 3655(55.19) 1414(53.04) 3.48 0.06 

90day deaths 2206(33.31) 811(30.42) 7.12  ＜0.01 

CCU = Coronary Care Unit, CVICU = Cardiac Vascular Intensive Care Unit, MICU = Medical Intensive 

Care Unit, MICU/SICU = Medical/Surgical Intensive Care Unit, SICU = Surgical Intensive Care Unit, 

Neuro SICU = Neuro Surgical Intensive Care Unit, TSICU = Trauma Surgical Intensive Care Unit, SOFA 

= Sequential Organ Failure Assessment, SAPSII = simplified acute physiology score Ⅱ , CCI = 

Commodity Channel Index. 

 

3.2 Variable Selection 

The final selection results are illustrated in the figure below. 

Based on the selection results, we considered the following 14 variables for machine learning 

modeling analysis with the whole study sample, including number of days in hospital, Hb, 

hematocrit (Hct), temperature, urine output, GCS, CCI, RBC count, SAPSII, Alkaline Phosphatase 

(ALP), BUN, liver disease, vasopressin and age group. 

 

In addition, we found that BUN and liver disease were not significant and excluded for the analysis 
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with CPS group, while mbp and ICU ward type were included due to their significance (P<0.05) in 

screening stage. Four variables including number of days in hospital, urine output, SAPSII, and liver 

disease were not significant in the CNS group and excluded in formal analysis with the CNS group, 

whereas Blood Lactic Acid (LaC) count and ICU ward type were meaningful variables and 

considered into the modeling analysis of the CNS group. 

 

3.3 Model Development and Validation 

Six machine learning models were constructed to predict the risk of in-ICU mortality among septic 

patients. We divided datasets into training and test sets in a ratio of 7:3, and the prediction results 

of the six machine learning algorithms based on test sets are shown in Table 2. The table describes 

the prediction performance of the six machine learning models (DT, RF, NB, XGB, GBDT, and NNET) 

in predicting the in-ICU mortality rate of patients with sepsis, including the CPS and CNS subgroups, 

which mainly includes accuracy, sensitivity, specificity, and AUC. (The prediction results of the six 

machine learning models on training sets are shown in Supplementary Table S2.) 

DT: Decision Tree , RF: Random Forest, NB: Naive Bayes, XGB: Extreme gradient boosting, GBDT: 

Gradient Boosted Decision Trees, NNET: Neural Network, AUC: area under the curve. 

 

For septic patients (the whole study sample), it can be learnt that the XGB model achieved the 

highest AUC of 0.782, while the AUCs of the remaining five models were relatively lower, with the 

AUC of the DT model being the lowest at 0.6741. Regarding predictive accuracy, the RF, the XGB, 

Table2 Predictive results of six machine learning models based on test sets for septic 

patients die in the ICU 

Group  Indicators 
Model 

DT RF NB XGB GBDT NNET 

All patients 

Accuracy 0.6701 0.7003 0.6701 0.7136 0.7042 0.6978 

Sensitivity 0.6605 0.6888 0.7062 0.7127 0.7056 0.7054 

Specificity 0.6887 0.7207 0.6324 0.7149 0.7022 0.6872 

AUC area 0.6741 0.7695 0.7372 0.782 0.7816 0.7768 

CPS group 

Accuracy 0.6934 0.7135 0.6964 0.708 0.7185 0.7044 

Sensitivity 0.6845 0.7136 0.7243 0.7142 0.7281 0.7226 

Specificity 0.7103 0.7134 0.6626 0.6986 0.7049 0.6803 

AUC area 0.6869 0.7775 0.7516 0.7756 0.7779 0.7751 

CNS group 

Accuracy 0.6683 0.6884 0.6821 0.6871 0.7109 0.6583 

Sensitivity 0.6616 0.7201 0.7709 0.7223 0.7403 0.7106 

Specificity 0.6872 0.6435 0.6051 0.6391 0.6697 0.5967 

AUC area 0.661 0.7558 0.754 0.7439 0.7588 0.7223 
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the GBDT and the NNET models all achieved around 70%, while the DT and the NB achieved the 

lowest accuracy of around 67%. In terms of sensitivity and specificity, the XGB, the GBDT and the 

NNET performed better.  

 

Considering the above four evaluation indicators collectively, the XGB algorithm demonstrated the 

best predictive performance, followed by the NNET model. Additionally, under the same evaluation 

indicators, the best prediction model for both the CPS and CNS groups is GBDT. XGB outperforms 

other models in the overall sample, mainly due to its strong generalization ability and adaptability 

to large datasets. The superiority of GBDT in the two subgroups of CPS and CNS, on the other hand, 

may stem from its flexibility and robustness in dealing with small samples and data with large 

feature differences. The ROC curves for the established models are shown in Figure 2. 

 

Figure 2. Summary AUC of 6 machine learning algorithms. (A) The AUC of the 6 machine learning 

algorithms in the All patients. (B)The AUC of the 6 machine learning algorithms in the CPS group. 

(C)The AUC of the 6 machine learning algorithms in the CNS group. 

 

3.4 Significance of features 

CCI, SAPSII, BUN, liver disease, vasopressin, and age were associated with a higher risk of in-ICU 

death. As their levels increased, the patient's risk of death increased. Number of days in hospital, 

Hb count, temperature, urine output, GCS and RBC count were associated with lower in-ICU 

mortality. Patients in Cardiac Vascular Intensive Care Unit (CVICU), Surgical Intensive Care Unit 

(SICU), and Trauma SICU (TSICU) had a higher risk of in-ICU mortality compared to Coronary Care 

Unit (CCU). Risk factors that were the same between the CPS and CNS subgroups were CCI, age, 

GCS, bilirubin total, temperature, Hb, RBC count, ICU ward type, hematocrit and vasopressin. In 

terms of differences between the two subgroups, days of hospitalization, urine output, SAPSII, and 

mbp were risk factors specific to the CPS group that may lead to an increased risk of death in the 

ICU, whereas in the CNS group, higher levels of BUN and LaC were specific risk factors.  
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Figure 3. Summary of SHAP for the XGB model for the All patients, the GBDT model for the CPS 

group, and the GBDT for the CNS group. (A) Feature importance from the XGB model of the All 

patients and the absolute value of the mean of the SHAP values for each feature is the feature 

importance distribution. (B) The higher the SHAP feature value, the higher the risk of death in the 

ICU for patients with sepsis. A point created in the model represents a characteristic attribute value 

for one patient, so that there is a point on each characteristic line for each patient. The points are 

colored according to the characteristic value of the corresponding patient and vertically cumulated 
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to describe the density. Red color indicates higher eigenvalues and blue color indicates lower 

eigenvalues. (C) Feature importance from the GBDT model of the CPS group and the absolute value 

of the mean of the SHAP values for each feature is the feature importance distribution. (D) The 

higher the SHAP feature value, the greater the risk of death in the ICU for CPS patients. (E) Feature 

importance from the GBDT model of the CNS group and the absolute value of the mean of the 

SHAP values for each feature is the feature importance distribution. (F) The higher the SHAP feature 

value, the greater the risk of death in the ICU for CNS patients.  

 

 

Figure 4. Summary of variable interaction dependency plot. (A) Interaction between CCI and 

Number of days in hospital on the risk of in-ICU mortality in patients with sepsis. (B)Interaction 

between CCI and GCS on the risk of death in the ICU in patients with CPS.. (C) Interaction between 

AGE and CCI on the risk of death in the ICU in patients with CNS. 

 

4. Discussion 

 

In this study, the clinical measurements of sepsis patients were extracted from the MIMIC-IV 

database. Then, we compared the baseline features and clinical characteristics of patients in the 

CPS and the CNS subgroups. We identified three different combinations of factors that may be 

associated with in-ICU death of sepsis patients. Based on six different machine learning algorithms, 

prediction models for in-ICU death were established for general patients with sepsis, as well as the 

CPS and the CNS groups. The optimized prediction model was selected by comprehensively 

considering the evaluation metrics including of AUC, prediction accuracy, sensitivity and specificity. 

The XGB model performed best for general patients with sepsis, the GBDT model performed best 

for the CPS and the CNS groups. And based on the interpretable learning method, we explored the 

importance of the identified relevant factors on the prognosis of sepsis patients. 

 

Despite the many challenges of studying patients with CNS, exploring the characteristics of patients 

with CNS can further reveal their prognostic features and influencing factors, which can contribute 

to treatment efficacy and improve prognosis[7]. By identifying specific biomarkers or clinical 
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features, it is also possible to provide useful information for the development of treatment 

strategies for patients with CPS and CNS[5]. The machine learning models developed offer a 

valuable tool for ICU clinicians, helping to identify high-risk patients early and enabling timely, 

targeted interventions[13]. Integrating these models into electronic health record (EHR) systems 

could facilitate real-time risk assessment and personalized care[21]. Future steps include 

prospective validation in independent ICU cohorts and the incorporation of dynamic data (e.g., 

real-time vital signs) to enhance model accuracy. Ultimately, these models could improve patient 

outcomes by guiding interventions and resource allocation, potentially reducing in-ICU mortality. 

 

Among the clinical features selected, low levels of hospital days, Hb, urine output, temperature 

and GCS, are found to be associated with increased risk of in-ICU death. Higher levels of age, Hct, 

CCI, SAPSII, TBil, BUN, the presence of liver disease and use of vasopressin are also associated with 

a higher in-ICU death risk for sepsis patients. 

 

Our analysis found little difference in comorbidities between the patients with CPS and CNS, but 

patients with CPS experienced more vasopressor support, which may be related to the severely 

impaired endothelial function of patients with CPS. It has been shown[22] that sepsis is an abnormal 

host response to infection, which is characterized by a variety of systemic disturbances, including 

increased vascular permeability and vasodilatation. Therapeutically, in addition to the use of 

antibiotics[23], early fluid resuscitation is also critical[24]. Su et al. showed that the condition of 

patients with hypoxemic is deteriorated by a large positive fluid balance[25]. However, not all 

patients respond effectively to fluid resuscitation and its effects usually maintain for a shorter 

period of time[26], thus requiring the use of vasoconstrictive drugs to improve organ perfusion[27]. 

In addition, septic patients admitted to different types of ICU wards differ in their risk of in-ICU 

death, and a study by Ohbe et al. found a difference in case-fatality rates between patients in ICU 

and those in general ward[28], but no study has yet delved into the association between the type of 

ICU ward and the risk of in-ICU death in septic patients. 

 

Our study further compared the similarities and differences in identified influential factors and 

established models for patients with CPS and CNS. Risk factors that were the same between the 

two subgroups were CCI, age, GCS, bilirubin total, temperature, Hb, RBC count, ICU ward type, 

hematocrit and vasopressin. This may be related to disease risk factors in sepsis patients, which 

did not seem to differ between the CPS and CNS groups. Nejtek et al. found that a higher CCI had 

a significant effect on mortality[29]. For differences between the two subgroups, number of days in 

hospital, urine output, SAPSII, MAP mean were important factors related to increased risk of in-

ICU death in the CPS group. However, in the CNS group, these variables were not included in the 
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final model. In the CNS group, a higher BUN and LaC level was a significant risk factor related to 

increased risk of in-ICU death, whereas it was not included in the final model in the CPS group. 

Matthew et al. showed that blood transfusion within the first 24 hours of onset was significantly 

associated with mortality in patients with CNS, but not in patients with CPS[30]. These differences 

may be related to the existence of differences in the type of pathogen infection and severity of the 

disease between the two groups, requiring targeted prevention and treatment measures for each 

group. Therefore, based on these differences, we can further explore the potential pathological 

and physiological similarities and differences between patients with CPS and CNS in order to 

achieve meaningful results in the prevention or treatment of sepsis in the future. 

 

In terms of model performance, the XGB model performed best for predicting death in ICU for all 

patients. For patients in the CPS and CNS subgroups, the GBDT model performed best. These 

findings are similar to Yang et al. who suggested that XGB and RF performed optimally for predicting 

sepsis onset[17]. However, the choice of model also needs to be based on practical clinical scenarios 

and needs to be weighed against other considerations. 

 

In this study, SHAP approach were also used to enhance the interpretation of the model established 

and to explore the main risk factors affecting sepsis patients' mortality in ICU. The results showed 

that some common risk factors such as higher TBil, renal insufficiency (reflected in higher BUN 

levels), higher SAPSII, increased age and treatment with vasopressin significantly increased the risk 

of in-ICU death for the whole study sample and in two subgroups. This is consistent with the results 

of existing studies[1,31,32]. It has been shown that the prevalence of sepsis is increasing in the elderly 

population and age is an independent risk factor for death[31]. A study by Kübler et al. found that 

about 89% of septic patients admitted to ICU in critical condition had dysfunction in three or more 

organs[32]. Organ dysfunction can be measured by SOFA score, where an increase of 2 or more 

points in SOFA score implies an in-hospital mortality rate of more than 10%[1]. 

 

We also found that lower Hb levels, urine output and GCS were associated with a lower risk of in-

ICU death. These findings are also supported by previous studies[32-35]. Qi et al. found that when a 

patient's Hb level falls below 80 g/L within 48 hours of admission to ICU, it will likely increase the 

risk of death in patients with sepsis[33]. Low urine output is an important indicator for detecting 

acute kidney injury[36], and also suggests an increased risk of death[34], which is often associated 

with renal dysfunction in patients with sepsis[32]. GCS is a rating scale that provides an objective 

assessment of patient consciousness[35], and a low GCS may be a simple and reliable predictor 

suggesting the need for initial resuscitation in patients with sepsis[37]. These findings are in line 

with the conclusions of previous studies, suggesting that, in order to promote the prognosis of 
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septic patients, we may need to closely monitor the liver and kidney functions, SOFA score and 

other indicators of infected patients, actively correct the anaemia, and maintain the patient's urine 

output and mental status, so as to allow the patient to obtain a good therapeutic prognosis.  

 

The SHAP approach applied provide better understanding of the final machine learning model and 

selected influential factors. Comprehensively sorting out the key factors affecting the prognosis of 

sepsis patients provided a potentially important guide for future risk assessment and individualized 

treatment in the clinical practice. It also provides the quantitative evidence necessary for better 

understanding of the prognosis of septic patients. 

 

Limitations of this study include: (1) Despite our rigorous screening of potential factors, we may 

not have been able to exclude all possible confounders due to the retrospective nature of this study, 

and we were unable to consider some important confounders such as antimicrobial use and timing 

of interventions due to lack of information about these factors. (2) Our analyses were based on 

retrospective data on the history of first ICU admission, and potential bias in sample selection may 

not be totally avoided. (3) The aim of our study was to explore the major influences on bacterial 

sepsis. The inclusion of other pathogens (e.g., fungi and viruses) may greatly increase the 

complexity of the data and make it difficult to accurately differentiate the specific characteristics 

of bacterial infections. Future studies could take fungal and viral infections into account to fully 

assess the impact of multiple pathogens. (4) Our study has only established a preliminary 

prediction model, and further prospective validation and optimization are needed before 

application in practice. 

 

5. Conclusions 

 

This study found no significant difference in in-ICU mortality between CPS and CNS, but it identified 

key risk factors for in-ICU mortality in sepsis patients, revealing significant differences between CPS 

and CNS. These findings can inform personalized treatment strategies, particularly for CNS patients, 

who may require distinct management approaches.  
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Variables CPS group(N=6622) CNS group(N=2666) Z/χ2 P value

age 65.48±16.34 65.52±16.63 73,38 0,53

age group/(n,%) 11,47 0,04

18～25 98 (1.48) 56 (2.1)

26～44 656 (9.91) 277 (10.39)

45～64 2307 (34.84) 862 (32.33)

65～79 2042 (30.84) 845 (31.7)

80～85 740 (11.17) 328 (12.3)

＞85 779 (11.76) 298 (11.18)

Male/(n,%) 3802(57.41) 1543(57.88) 0,15 0,7

Ethnicity/(n,%) 26,15 ＜0.01

ASIAN 217 (3.28) 52 (1.95)

BLACK 739 (11.16) 277 (10.39)

WHITE 4379 (66.13) 1744 (65.42)

OTHER 1287 (19.44) 593 (22.24)

ICU ward type/(n,%) 212,31 ＜0.01

CCU 518 (7.82) 335 (12.57)

CVICU 469 (7.08) 310 (11.63)

MICU 2115 (31.94) 629 (23.59)

MICU/SICU 1781 (26.9) 524 (19.65)

SICU 940(14.20) 429 (16.09)

Neuro SICU 129(1.95) 83(3.11)

TSICU 670(10.12) 356(13.35)

Table 1 Comparison of baseline characteristics between the two subgroups in ICU
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Severity score/(Md[IQR])

SOFA 7.73 (3.72, 11.75) 7.04 (3.29, 10.8) 82,83 ＜0.01

SAPSII 42.35 (27.62, 57.07) 40.27 (26.22, 54.31) 80,92 ＜0.01

CCI 6.17 (3.26, 9.09) 6.06 (3.09, 9.04) 76,79 0,15

Comorbidity/(n,%)

chronic pulmonary disease 2067 (31.21) 775 (29.07) 4,02 0,05

liver disease 571 (8.62) 218 (8.18) 0,43 0,51

diabetes 271 (4.09) 97 (3.64) 0,91 0,34

hypertension 1554 (23.47) 620 (23.26) 0,04 0,85

Treatment measures/(n,%)

ventilation 4369 (65.98) 1740 (65.27) 0,4 0,53

dialysis 494 (7.46) 180 (6.75) 1,33 0,25

vasopressin 1083 (16.35) 362 (13.58) 10,94 ＜0.01

Number of days/(d[IQR])

Number of days in hospital 17.2 (0.4, 34.01) 16.07 (0.21, 31.93) 78,28 ＜0.01

Number of days in ICU 7.4 (-0.95, 15.75) 7.63 (-0.92, 16.17) 74,11 0,22

Outcome/(n,%)

deaths 3655(55.19) 1414(53.04) 3,48 0,06

90day deaths 2206(33.31) 811(30.42) 7,12 ＜0.01
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DT RF NB XGB GBDT NNET

Accuracy 0,6701 0,7003 0,6701 0,7136 0,7042 0,6978

Sensitivity 0,6605 0,6888 0,7062 0,7127 0,7056 0,7054

Specificity 0,6887 0,7207 0,6324 0,7149 0,7022 0,6872

AUC area 0,6741 0,7695 0,7372 0,782 0,7816 0,7768

Accuracy 0,6934 0,7135 0,6964 0,708 0,7185 0,7044

Sensitivity 0,6845 0,7136 0,7243 0,7142 0,7281 0,7226

Specificity 0,7103 0,7134 0,6626 0,6986 0,7049 0,6803

AUC area 0,6869 0,7775 0,7516 0,7756 0,7779 0,7751

Accuracy 0,6683 0,6884 0,6821 0,6871 0,7109 0,6583

Sensitivity 0,6616 0,7201 0,7709 0,7223 0,7403 0,7106

Specificity 0,6872 0,6435 0,6051 0,6391 0,6697 0,5967

AUC area 0,661 0,7558 0,754 0,7439 0,7588 0,7223

CNS group

 Indicators

Table2 Predictive results of six machine learning models based on test sets for septic patients die in the ICU

Model
Group

All patients

CPS group
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Study design
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Summary AUC of 6 machine learning algorithms
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Summary of SHAP
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Summary of variable interaction dependency plot
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