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Association between gastroesophageal reflux disease 
and metabolic syndrome: a bidirectional two-sample 
Mendelian randomization analysis

Tao He1, Xiaoling Geng1, Xue Lin2, Yufei Li1, Zhijun Duan1*

Gastroesophageal reflux disease (GERD), characterized primarily 
by regurgitation and recurrent heartburn, is predominantly caused by 
esophageal disorders such as peptic strictures, reflux esophagitis, and 
Barrett’s esophagus [1]. In recent years, changes in living standards, life-
style, and dietary habits have contributed to the increased prevalence of 
GERD. This condition not only diminishes quality of life for sufferers but 
also significantly increases healthcare resource utilization and economic 
burden [2]. Therefore, it is crucial to implement preventative measures to 
reduce the risk of GERD development.

Metabolic syndrome (MetS) encompasses a range of metabolic abnor-
malities, including hypertension, hyperglycemia, hypoalphalipoprotein-
emia, hypertriglyceridemia, and abdominal obesity [3, 4]. The incidence 
of MetS is rising globally [5]. Although several observational studies have 
identified positive correlations between GERD risk and MetS incidence 
[6, 7], these associations may be influenced by factors such as short fol-
low-up periods, limited sample sizes, confounders, and reverse causation 
[8]. Thus, further analysis is necessary to determine the causal relation-
ship between MetS and the risk of GERD development.

In this study, we conducted univariable Mendelian randomization (UVMR) 
and multivariable Mendelian randomization (MVMR) analyses to investigate 
the causal relationship between MetS, its components, and the risk of GERD 
development. Additionally, sensitivity analyses were performed to assess the 
impact of assumptions and the robustness of the results.

Methods. Study design: This research utilized a bidirectional two-sam-
ple Mendelian randomization (MR) analysis to investigate the causal 
relationship between MetS and its components with GERD risk [9]. By 
employing single nucleotide polymorphisms (SNPs) as instrumental vari-
ables, MR can reveal causality between specific exposures and outcomes 
[8]. This approach leverages the principle that genetic variant allocation 
follows Mendel’s second law, ensuring randomization and making MR 
comparable to a  randomized controlled trial. This design is crucial for 
minimizing confounders and reverse causality inherent in observational 
studies, thereby enhancing the reliability of the results [10].

Data sources: Exposure: Data for MetS and its components were ob-
tained from summary statistics of comprehensive genome-wide associa-
tion studies (GWAS) conducted on MetS (n = 291,107), triglycerides (TG) 
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(n = 441,016), and high-density lipoprotein (HDL) 
(n = 403,943) from the UK Biobank [11, 12]; body 
mass index (BMI) (n = 461,460), hypertension (n = 
463,010), waist circumference (WC) (n = 462,166), 
and type 2 diabetes (T2D) (n = 461,578) from the 
Medical Research Council Integrative Epidemiol-
ogy Unit (MRC-IEU); fasting blood glucose (FBG) 
(n = 58,074) from the Glucose and Insulin-Relat-
ed Traits Consortium (MAGIC) [13]; and diastolic 
blood pressure (DBP) (n = 757,601) and systolic 
blood pressure (SBP) (n = 757,601) from the Inter-
national Consortium of Blood Pressure [14].

Outcome: GERD data were obtained from a GWAS 
conducted by the MRC-IEU, involving 473,524 
healthy controls and 129,080 GERD patients [15].

MR analyses: A  genome-wide significance 
threshold of p < 5 × 10–8 was applied for select-
ing instrumental variables (IVs). SNPs exhibiting 
linkage disequilibrium (LD) (r2 < 0.001) within  
a 10 million base-pair region were excluded, retain-
ing only independent SNPs [16]. In cases where the 
GWAS data lacked corresponding outcome SNPs, 
proxy SNPs in LD (r2 > 0.8) were used. We manu-
ally reviewed the harmonized data and excluded 
SNPs strongly associated with the outcome (p < 
1 × 10–5). After excluding SNPs with strong out-
come associations, bidirectional MR analysis was 
conducted. IVs with an F-statistic > 10 were con-
sidered robust [17]. The F-statistic was calculated 
using the formula: F = [(N – k – 1)/k] × [R2/(1 – R2)], 
where N represents the sample size, k the total 
number of SNPs, and R2 the proportion of variance 
explained by the IVs. PhenoScanner V2 was em-
ployed to identify other genome-wide significant 
traits associated with the SNPs that could serve as 
confounding factors [18].

The inverse variance weighted (IVW) method 
was the primary analysis tool for estimating caus-
al effects [19]. Sensitivity analyses included MR-
Egger, weighted median, and weighted mode ap-
proaches [20]. Heterogeneity was assessed using 
Cochran’s Q statistic (p < 0.05). Potential outliers 
were identified through leave-one-out analysis 
and forest plots, while horizontal pleiotropy was 
detected using the MR-Pleiotropy RESidual Sum 
and Outlier (MR-PRESSO) and MR-Egger intercept 
tests [21]. MR-PRESSO was also used to evaluate 
the influence of identified outliers on MR results, 
followed by MR analysis post-outlier removal [22].

Additionally, we employed multivariable Men-
delian randomization (MVMR)-IVW method to val-
idate significant causal relationships identified in 
the UVMR analysis, ensuring adjustments for po-
tential confounding factors associated with MetS, 
BMI, WC, hypertension, HDL, TG, and T2D.

Statistical analysis: Statistical analyses were 
performed using the R packages (v4.2.2) “Mende-
lian Randomization”, “MR-PRESSO” and “TwoSam-

pleMR” with two-sided p-values < 0.05 considered 
statistically significant.

Results. The SNPs related to MetS, its compo-
nents, and GERD are detailed in Supplementa-
ry Tables SI and SII. Using the IVW method, we 
identified significant causal associations between 
GERD risk and several factors, including waist cir-
cumference, BMI, type 2 diabetes, hypertension, 
TG, MetS, and HDL cholesterol. The respective 
odds ratios (OR) were 2.166, 2.160, 1.951, 1.908, 
1.135, 1.034, and 0.944, with corresponding 95% 
confidence intervals (CIs) of 1.972–2.270, 2.033–
2.295, 1.074–3.545, 1.135–3.206, 1.071–1.203, 
1.002–1.068, and 0.896–0.994, all with associ-
ated p-values < 0.001. However, no significant 
causal associations were found between GERD 
risk and FBG, SBP, or DBP, with respective ORs of 
1.043, 1.002, and 0.997, corresponding 95% CIs of 
0.963–1.131, 0.999–1.005, and 0.991–1.003, and 
p-values of 0.302, 0.196, and 0.332.

Significant heterogeneity was observed for all 
traits except MetS (p = 0.498), HDL (p = 0.158), 
T2D (p = 0.528), and FBG (p = 0.386), but no plei-
otropy was detected. Additionally, the MR-PRESSO 
test did not identify any distorted effect outliers 
(Figure 1 A). Supplementary Figures S1–S10 dis-
play the significant causal effects between MetS, 
its components, and GERD risk using leave-one-
out, forest, funnel, and scatter plots.

In the reverse analysis, the IVW method re-
vealed significant causal relationships between 
GERD risk and MetS, BMI, WC, DBP, SBP, hyperten-
sion, HDL, TG, T2D, and FBG. The respective ORs 
were 1.765, 1.454, 1.324, 1.378, 1.973, 1.053, 
0.433, 1.187, 1.026, and 1.033, with correspond-
ing 95% CIs of 1.623–1.919, 1.363–1.550, 1.258–
1.393, 1.135–1.672, 1.415–2.749, 1.045–1.062, 
0.816–0.851, 1.159–1.215, 1.020–1.032, and 
1.007–1.060, all with p-values < 0.001. Significant 
heterogeneity was observed for all traits except 
FBG (p = 0.737), with no significant horizontal 
pleiotropy (p > 0.05), as indicated by the MR-Egger 
intercept test (Figure 1 B). Supplementary Figures 
S11–S20 display the significant causal effects be-
tween GERD and MetS and its components using 
leave-one-out, forest, funnel, and scatter plots.

MVMR analysis revealed that among the MetS 
components, BMI (OR = 2.103; 95% CI: 1.752–
2.525; p = 1.60E–15) and hypertension (OR = 5.087; 
95% CI: 3.109–8.324; p = 9.51E–11) were positive-
ly associated with the risk of GERD development 
(Figure 2).

Discussion. The this study, we evaluated the ef-
fects of MetS and its components on the risk of 
GERD development using MR analysis. The UVMR 
analysis demonstrated that MetS, WC, BMI, hyper-
tension, HDL, TG, and T2D were associated with 
GERD risk, whereas DBP, SBP, and FBG did not show 
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A 
Exposure 	 SNPs 	 Methods 	 P-value 	 OR (95% CI) 	 Heterogeneity. 	 Pleiotropy.
					     p-val	 p-val 
Metabolic 	 24 	 MR-Egger 	 2.55e-01 	 1.050 (0.967 to 1.141) 	 4.48e-01 	 0.696 
syndrome	 24 	 IVW 	 3.76e-02 	 1.034 (1.002 to 1.068) 	 4.98e-01 
	 24 	 Weighted-median 	 4.30e-01 	 1.020 (0.971 to 1.071) 
	 24 	 MR-Presso 	 4.61e-02 	 1.034 (1.002 to 1.067) 
BMI 	 159 	 MR-Egger 	 5.84e-09 	 1.862 (1.528 to 2.270) 	 2.26e-05 	 0.125 
	 159 	 IVW 	 1.49e-136 	 2.160 (2.033 to 2.295) 	 1.45e-05 
	 159 	 Weighted-median 	 7.91e-63 	 2.008 (1.851 to 2.179) 
	 159 	 MR-Presso 	 2.40e-59 	 2.158 (2.035 to 2.288) 
WC 	 122 	 MR-Egger 	 6.47e-11 	 1.966 (1.634 to 2.365) 	 4.40e-03 	 0.401 
	 122 	 IVW 	 3.30e-97 	 2.116 (1.972 to 2.270) 	 4.53e-03 
	 122 	 Weighted-median 	 1.97e-37 	 2.023 (1.816 to 2.254) 
	 122 	 MR-Presso 	 2.57e-42 	 2.122 (1.978 to 2.276) 
Hypertension 	 24 	 MR-Egger 	 3.82e-01 	 0.410 (0.058 to 2.901) 	 5.51e-02 	 0.125 
	 24 	 IVW 	 1.47e-02 	 1.908 (1.135 to 3.206) 	 2.97e-02 
	 24 	 Weighted-median 	 5.18e-01 	 1.228 (0.659 to 2.287) 
	 24 	 MR-Presso 	 2.29e-02 	 1.908 (1.135 to 3.206) 
SBP 	 155 	 MR-Egger 	 2.24e-01 	 1.005 (0.997 to 1.012) 	 1.00e-02 	 0.450 
	 155 	 IVW 	 1.96e-01 	 1.002 (0.999 to 1.005) 	 1.06e-02 
	 155 	 Weighted-median 	 5.01e-01 	 1.002 (0.997 to 1.006) 
	 155 	 MR-Presso 	 2.04e-01 	 1.002 (0.999 to 1.005) 
DBP 	 185 	 MR-Egger 	 9.84e-01 	 1.000 (0.985 to 1.015) 	 1.30e-07 	 0.710 
	 185 	 IVW 	 3.32e-01 	 0.997 (0.991 to 1.003) 	 1.61e-07 
	 185 	 Weighted-median 	 2.74e-01 	 0.996 (0.989 to 1.003) 
	 185 	 MR-Presso 	 2.86e-01 	 0.997 (0.991 to 1.003) 
HDL 	 66 	 MR-Egger 	 8.04e-01 	 0.990 (0.911 to 1.075) 	 1.83e-01 	 0.158 
	 66 	 IVW 	 2.78e-02 	 0.944 (0.896 to 0.994) 	 1.58e-01 
	 66 	 Weighted-median 	 2.88e-01 	 0.961 (0.892 to 1.034) 
	 66	 MR-Presso 	 2.76e-02 	 0.943 (0.896 to 0.992) 
TG 	 89 	 MR-Egger 	 5.23e-01 	 1.041 (0.921 to 1.177) 	 3.19e-02 	 0.121 
	 89 	 IVW 	 1.81e-05 	 1.135 (1.071 to 1.203) 	 2.37e-02 
	 89 	 Weighted-median 	 2.50e-02 	 1.107 (1.013 to 1.209) 
	 89 	 MR-Presso 	 7.50e-05 	 1.129 (1.066 to 1.195) 
Type 2 diabetes 	 22 	 MR-Egger 	 9.48e-01 	 1.102 (0.063 to 19.420) 	 4.74e-01 	 0.694 
	 22 	 IVW 	 2.82e-02 	 1.951 (1.074 to 3.545) 	 5.28e-01
	 22 	 Weighted-median 	 2.70e-01 	 1.600 (0.694 to 3.689) 
	 22 	 MR-Presso 	 4.47e-02 	 1.828 (1.047 to 3.189)
FBG 	 18 	 MR-Egger 	 3.46e-02 	 1.232 (1.032 to 1.471) 	 6.10e-01 	 0.057 
	 18 	 IVW 	 3.02e-01 	 1.043 (0.963 to 1.131) 	 3.86e-01 
	 18 	 Weighted-median 	 8.03e-02 	 1.103 (0.988 to 1.230) 
	 18 	 MR-Presso 	 2.74e-01 	 1.043 (0.969 to 1.123) 

Figure 1. A – Mendelian randomization results of the effect of metabolic syndrome and its components and GERD

BMI – body mass index, WC – waist circumference, SBP – systolic blood pressure, DBP – diastolic blood pressure, HDL – high-
density lipoprotein, TG – triglyceride, FBG – fasting blood glucose.

	 0.5	 1.0	 1.5

	 Protective factor 	 Risk factor 

a causal relationship with GERD. Interestingly, re-
verse MR analysis revealed causal associations be-
tween GERD and both DBP and SBP. Furthermore, 
MVMR analysis identified BMI and hypertension as 
having a causal relationship with GERD. Sensitivity 
analysis confirmed the absence of horizontal plei-
otropy, reinforcing the robustness of our findings.

Adipose tissue in individuals with obesity is met-
abolically active, producing various inflammatory 
cytokines that contribute to systemic chronic in-
flammation, which can promote the development 
of GERD [23]. The link between obesity and GERD 
has been well established in numerous epidemio-
logical studies [24]. Obesity contributes to insulin 
resistance, leading to a cascade of metabolic abnor-
malities that are key determinants of MetS [25]. This 
complexity makes it challenging to discern whether 
obesity alone is causally involved in GERD or if obesi-
ty, along with its associated metabolic disorders, col-

lectively contributes to GERD development. Epidemi-
ological evidence suggests that MetS is significantly 
associated with an increased risk of GERD [26]. For 
example, a cross-sectional study (n = 372) found that 
patients with MetS had a higher incidence of reflux 
esophagitis (RE) [27]. Additionally, a meta-analysis of 
15 cohorts (n = 103,048) indicated that MetS may 
independently serve as a risk factor for GERD [28]. 
Consistent with these findings, our bidirectional MR 
analysis revealed a  highly significant bidirectional 
causal association between MetS and GERD risk.

However, our study has certain limitations. First, 
our research was conducted within a European pop-
ulation, which may limit the generalizability of our 
findings to other ethnic groups. Second, we were un-
able to perform stratified analyses based on gender 
and age due to the lack of individual-level data, un-
derscoring the need for further comprehensive pro-
spective studies. Lastly, while MR analysis provides 
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B 
Outcome 	 SNPs 	 Methods 	 P-value 	 OR (95% CI) 	 Heterogeneity. 	 Pleiotropy.
					     p-val	 p-val 
Metabolic 	 77 	 MR-Egger 	 2.80e-03 	 2.098 (1.311 to 3.358) 	 1.34e-16 	 0.465 
syndrome	 77 	 MN 	 2.56e-40 	 1.765 (1.623 to 1.919) 	 1.36e-16 
	 77 	 Weighted-median 	 1.66e-38 	 1.690 (1.562 to 1.830)
	 77 	 MR-Presso 	 1.58e-21 	 1.739 (1.601 to 1.888) 
BMI 	 76 	 MR-Egger 	 4.14e-03 	 1.726 (1.202 to 2.477) 	 5.96e-242 	 0.348 
	 76 	 IVW 	 4.65e-30 	 1.454 (1.363 to 1.550) 	 9.08e-245
	 76 	 Weighted-median 	 7.13e-62 	 1.340 (1.294 to 1.387) 
	 76 	 MR-Presso 	 2.14e-18 	 1.441 (1.354 to 1.534) 
WC 	 76 	 MR-Egger 	 2.52e-02 	 1.398 (1.049 to 1.863) 	 7.63e-177 	 0.707 
	 76 	 IVW 	 3.52e-27 	 1.324 (1.258 to 1.393) 	 1.12e-176 
	 76 	 Weighted-median 	 1.04e-52 	 1.245 (1.210 to 1.280) 
	 76 	 MR-Presso 	 1.62e-17 	 1.318 (1.254 to 1.384) 
Hypertension 	 76 	 MR-Egger 	 4.63e-01 	 1.017 (0.973 to 1.063) 	 2.45e-11 0.117 
	 76 	 IVW 	 2.89e-37 	 1.053 (1.045 to 1.062) 	 5.71e-12 
	 76 	 Weighted-median 	 7.28e-30 	 1.051 (1.042 to 1.060) 
	 76 	 MR-Presso 	 1.97e-20 	 1.052 (1.044 to 1.060) 
SBP 	 55 	 MR-Egger 	 8.25e-01 	 0.801 (0.113 to 5.659) 	 6.29e-03 	 0.364
	 55 	 IVW 	 6.08e-05 	 1.973 (1.415 to 2.749) 	 6.22e-03 
	 55 	 Weighted-median	  4.79e-03 	 1.835 (1.204 to 2.799) 
	 55 	 MR-Presso 	 1.05e-04 	 2.025 (1.455 to 2.818) 
DBP 	 51 	 MR-Egger 	 4.16e-01 	 0.608 (0.185 to 1.995) 	 3.86e-02 	 0.178 
	 51 	 IVW 	 1.21e-03 	 1.378 (1.135 to 1.672) 	 3.01e-02 
	 51 	 Weighted-median 	 1.97e-02 	 1.350 (1.049 to 1.737) 
	 51 	 MR-Presso 	 2.50e-03 	 1.360 (1.125 to 1.644) 
HDL 	 49 	 MR-Egger 	 1.13e-02 	 0.829 (0.721 to 0.953) 	 3.12e-02 	 0.942 
	 49 	 IVW 	 3.43e-65 	 0.833 (0.816 to 0.851) 	 3.87e-02 
	 49 	 Weighted-median 	 2.07e-32 	 0.843 (0.819 to 0.867) 
	 49 	 MR-Presso 	 4.09e-22 	 0.835 (0.817 to 0.852) 
TG 	 62 	 MR-Egger 	 1.28e-01 	 1.154 (0.962 to 1.384) 	 1.67e-06 	 0.763 
	 62 	 IVW 	 1.38e-44 	 1.187 (1.159 to 1.215) 	 2.34e-06 
	 62 	 Weighted-median 	 5.36e-25 	 1.155 (1.124 to 1.187) 
	 62 	 MR-Presso 	 6.02e-20 	 1.183 (1.153 to 1.212) 
Type 2 diabetes 	 76 	 MR-Egger 	 8.04e-03 	 1.047 (1.013 to 1.083) 	 1.72e-18 	 0.217
	 76 	 MN 	 5.65e-17 	 1.026 (1.020 to 1.032) 	 5.60e-19 
	 76 	 Weighted-median 	 1.04e-16 	 1.023 (1.017 to 1.028)  
	 76 	 MR-Presso 	 4.97e-12 	 1.025 (1.019 to 1.031)
FBG 	 65 	 MR-Egger 	 1.99e-01 	 1.102 (0.952 to 1.275) 	 7.31e-01 	 0.386 
	 65 	 IVW 	 1.15e-02 	 1.033 (1.007 to 1.060) 	 7.37e-01 
	 65 	 Weighted-median 	 1.02e-01 	 1.031 (0.994 to 1.070) 
	 65 	 MR-Presso 	 1.55e-03 	 1.036 (1.014 to 1.058) �

Figure 1. Cont. B – Mendelian randomization results of the effect of GERD and metabolic syndrome and its com-
ponents

BMI – body mass index, WC – waist circumference, SBP – systolic blood pressure, DBP – diastolic blood pressure, HDL – high-
density lipoprotein, TG – triglyceride, FBG – fasting blood glucose.

	 0.5	 1.0	 1.5

	 Protective factor 	 Risk factor 

Figure 2. Causal relationships between metabolic syndrome (MetS), its components, and the risk of gastroesopha-
geal reflux disease (GERD) development estimated using the multivariable Mendelian randomization-inverse vari-
ance weighted (MVMR-IVW) method

	 0.5	 1.0	 3.0

	 Protective factor 	 Risk factor 

Exposure 	 OR (95% CI) 	 P-value 
Metabolic syndrome 	 0.978 (0.952 to 1.005) 	 1.05e-01 

BMI 	 2.103 (1.752 to 2.525) 	 1.60e-15 

WC 	 0.927 (0.732 to 1.173) 	 5.27e-01 

Hypertension 	 5.087 (3.109 to 8.324) 	 9.51e-11 

HDL 	 0.979 (0.932 to 1.028) 	 3.91e-01 

TG 	 1.047 (0.992 to 1.105) 	 9.36e-02 

Type 2 diabetes 	 0.660 (0.319 to 1.364) 	 2.62e-01 
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valuable insights into causal relationships, it does 
not elucidate the underlying biological mechanisms.

In conclusion, our UVMR and MVMR analyses 
identified causal associations between MetS, its 
components, and GERD development risk. Howev-
er, further studies are needed to validate the role of 
MetS and its components in regulating GERD devel-
opment. Our findings suggest that MetS may serve 
as an early intervention target for preventing GERD.
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