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A b s t r a c t 

Introduction: This study aimed to provide genetic evidence linking drinking 
habits of different beverages (DHDB) to sleep disorder liability (SDL), poten-
tially informing clinical treatments to improve lifestyle factors.
Material and methods: A two-sample Mendelian randomization (MR) meth-
od was employed to explore the genetic associations between DHDB and 
SDL. The DHDB variables studied encompassed alcohol intake (ALI), alcohol 
intake frequency (ALF), high-frequency drinking with meals (HAL), tea intake 
(TEAI), coffee intake (COFI), and red wine intake (RWI). The SDL variables an-
alyzed were insomnia (INS), inhibit excitability (IE), and sleep duration (SD). 
Results: The MR analysis identified genetic links between ALI and INS, ALF 
and IE, ALF and SD, HAL and INS, HAL and IE, HAL and SD, TEAI and IE, TEAI 
and SD, and COFI and IE (p (inverse variance weighting – IVW) < 0.05). None-
theless, no significant genetic links were detected between ALI and IE, ALI 
and SD, ALF and INS, TEAI and INS, COFI and INS, COFI and SD, RWI and INS, 
RWI and IE, or RWI and SD (p (IVW) > 0.05). 
Conclusions: Alcohol intake may elevate insomnia risk without affecting 
daytime sleepiness or sleep duration. Frequent alcohol consumption may 
lead to daytime sleepiness and reduced sleep duration but not insomnia. 
Alcohol with meals might reduce insomnia and daytime sleepiness while 
improving sleep duration. Tea appears unlinked to insomnia and may re-
duce daytime drowsiness. Coffee may alleviate daytime drowsiness without 
causing insomnia, and red wine shows no significant association with sleep 
disorders. Reverse MR suggests potential links between sleep disorders and 
alcohol or caffeine intake.

Key words: Mendelian randomization, drinking habits of different 
beverages, sleep disorder, alcohol intake, gene association, high frequency 
of drinking with meals, causality analysis.

Introduction

The diverse eating habits observed across different regions are a tes-
tament to the influence of economic and cultural exchanges, which 
have facilitated the cross-cultural dissemination of global food practices 
[1–4]. Notably, beverages including alcoholic beverages, coffee, as well 
as tea have transcended regional boundaries to emerge as global com-
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modities, reflecting shifts in dietary patterns and 
lifestyle choices [5]. These beverages are not only 
culturally significant but also have complex rela-
tionships with human health, particularly in the 
context of metabolic and neurological disorders. 
Understanding these relationships is crucial for 
unraveling the potential genetic underpinnings 
that link beverage consumption to various health 
outcomes, including sleep disorders. This study 
seeks to address these complexities by employing 
Mendelian randomization (MR), an approach that 
offers robust causal insights by utilizing genetic 
variants as instrumental variables, thus mitigating 
confounding factors and reverse causation that 
often plague observational studies.

The impact of alcoholic beverage consumption 
on human health has been a subject of extensive 
investigation. Studies have linked the intake of al-
coholic beverages to cardiovascular and cerebro-
vascular diseases, revealing intricate relationships 
between alcohol consumption and various health 
outcomes [6–9]. Associations between alcohol 
consumption and diseases such as diabetes and 
neurological disorders, particularly alcoholic fatty 
liver disease, underscore the multifaceted inter-
play between alcohol intake and metabolic health 
[10–12]. These metabolic disruptions are closely 
linked to sleep disturbances, as the regulation of 
glucose and lipid metabolism plays a critical role 
in maintaining normal sleep architecture. Further-
more, alcohol consumption’s effects on the ner-
vous system, including nerve conduction delays, 
nerve cell damage, and cognitive decline, may also 
contribute to the development of sleep disorders 
[13–16]. 

The nervous system’s role in regulating sleep 
is particularly relevant, as alcohol’s neurotoxic ef-
fects likely contribute to sleep disorders. Chronic 
alcohol use has been shown to impact both sen-
sory and motor functions by slowing down nerve 
conduction velocities and causing structural dam-
age to nerve cells. Additionally, cognitive decline 
associated with long-term alcohol use further ex-
acerbates the risk of sleep disorders, emphasizing 
the need for a deeper understanding of the genet-
ic links between alcohol consumption and sleep 
disturbances [14–18].

The typical duration of sleep for a person with-
out insomnia generally falls within the range of 
seven to eight hours, although the specific sleep 
requirements can vary individually. Insomnia suf-
ferers often experience impaired work efficiency 
and compromised mental health due to insuf-
ficient sleep. Disrupted circadian rhythms have 
been implicated in the pathophysiology of insom-
nia and are associated with adverse health out-
comes [19, 20]. In the contemporary workplace, 
coffee and tea have become integral components 

of the daily routine for office workers [21]. The 
varying habits surrounding beverage intake have 
implications for the body’s excitement levels, 
which, in turn, are intricately linked to sleep pat-
terns [12]. This leads to the hypothesis that dif-
ferent beverage consumption patterns may exert 
diverse effects on sleep disorders, and MR is par-
ticularly suited to investigate these associations. 

Mendelian randomization, an emerging sta-
tistical method in genetics, offers a powerful ap-
proach to explore these complex relationships by 
utilizing genetic variants as instrumental variables 
to infer causality [22, 23]. Previous studies have 
successfully applied MR to investigate the genetic 
associations between lifestyle factors, such as al-
cohol consumption, and various health outcomes, 
including cardiovascular and metabolic diseas-
es [24–29]. However, there remains a  significant 
gap in research specifically addressing the genet-
ic links between beverage consumption patterns 
and sleep disorders. This gap highlights the neces-
sity for further exploration, particularly given the 
complex interactions between diet, genetics, and 
sleep health [30–32].

Motivated by the intricate interplay between 
sleep disorders and drinking habits, this study 
employed the MR method to investigate the ge-
netic associations between various beverage con-
sumption patterns and sleep disorders [28–30]. By 
focusing on this novel area, we aimed to provide 
insights that not only advance our understanding 
of the genetic determinants of sleep health but 
also inform public health recommendations and 
clinical practices.

Material and methods 

The gene sampling utilized in this study was 
sourced from the website https://gwas.mrcieu.ac, 
predominantly relying on data from the UK Bio-
bank (UKB). The UK Biobank dataset is derived 
from extensive gene sequencing conducted on 
a  large cohort of participants. Notably, the data-
set is extensive, encompassing a diverse array of 
genes. The richness of its data positions this data-
set as a potential source for novel insights into the 
etiology of prevalent diseases and as a guide for 
identifying potential therapeutic targets. Detailed 
information regarding the data sources is provid-
ed in Table I.

The exposure variables in this study refer to 
different drinking habits characterized by the type 
and frequency of beverage consumption. The vari-
ables include: 1. Alcohol intake (ALI): The average 
amount of alcohol consumed by an individual, 
typically measured in grams per day. 2. Alcohol 
intake frequency (ALF): The frequency of alcohol 
consumption, such as the number of drinking oc-
casions per week. 3. High-frequency drinking with 
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meals (HAL): The frequency with which alcohol is 
consumed during meals, indicating a pattern of al-
cohol intake associated with eating. 4. Tea intake 
(TEAI): The quantity of tea consumed, often mea-
sured in cups per day. 5. Coffee intake (COFI): The 
quantity of coffee consumed, measured similarly 
to tea intake. 6. Red wine intake (RWI): The specif-
ic consumption of red wine, distinct from other al-
coholic beverages in both amount and frequency.

These exposure variables are analyzed to un-
derstand their genetic association with sleep dis-
order liability (SDL) outcomes, which include: 1. In-
somnia (INS): Difficulty in falling or staying asleep, 
measured as a binary trait. 2. Inhibit excitability 
(IE): A measure of daytime sleepiness or fatigue, 
indicating the inability to stay alert. 3. Sleep dura-
tion (SD): The total amount of sleep in a 24-hour 
period, measured in hours.

The term “exposure factor” denotes a  puta-
tive causal risk factor, encompassing biomarkers, 
physical measurements, or any risk factor capable 
of influencing outcomes. These outcomes per-
tain to diseases or physiological and pathological 
states, yet are not confined to a specific ailment. 
Given the numerous confounding factors inherent 
in the association between exposure factors and 
diseases, clinical observation and analysis become 
challenging. Drinking habits and sleep disorders, 
for instance, are outcomes influenced by multiple 
genes and factors. However, genes exhibit a sta-
ble nature, adhering to Mendel’s first and second 
laws of inheritance. In other words, during meiotic 
gamete formation, parental alleles undergo ran-
dom assignment to offspring. This ensures that 
the link between genes and outcomes remains 
uninfluenced by common confounding factors, 
with genes serving as representatives for habits or 
pathological states. To discern statistical varianc-
es in genes across a substantial sample size and 
elucidate the genetic correlation between expo-
sure factors and outcomes, we employ statistical 

methods, specifically MR. MR enables the inves-
tigation of genetic associations with outcomes, 
offering a  robust means to analyze the intricate 
relationships between exposure factors and their 
consequential effects.

Statistical software and database sources

Our analysis was performed using RStudio 
software (version: 4.0.0) with a primary focus on 
utilizing the TwoSampleMR package [31–34]. The 
TwoSampleMR package allows for the system-
atic implementation of MR using summary data 
from genome-wide association studies (GWAS). It 
includes functions for harmonizing datasets, per-
forming MR analysis, and assessing potential plei-
otropy, making it an ideal tool for this study. For 
detailed information regarding the genome-wide 
association research data on drinking habits of 
different beverages (DHDB) as well as SDL, refer 
to the database website: https://gwas.mrcieu.ac 
(Table I). Ensuring the robustness of MR studies, 
we adhered to the critical assumptions, which 
encompass these three critical aspects: (1) the 
instrumental variables were meticulously select-
ed to maintain a close association with exposure 
variables; (2) the chosen instrumental variables 
demonstrated no association with confounding 
factors linked to both exposure and outcome vari-
ables; (3) instrumental variables were employed in 
a manner that did not unduly influence the results 
unless they were inherently linked to the exposure 
under investigation [32, 34].

Selection of instrumental variables  
and screening of SNPs 

In conducting the directional MR analysis, we 
employed DHDB as the exposure variable and SDL 
as the outcome variable for the selection of instru-
mental variables. The objective was to scrutinize 
and identify instrumental variables that could 

Table I. Description of contributing studies

Type Phenotype Population SNP Sample  
size

Access address

ALI Alcohol intake Europeans 11,887,865 335,394 https://gwas.mrcieu.ac.uk/datasets/ieu-b-73/  

ALF Alcohol intake 
frequency

Europeans 9,851,867 462,346 https://gwas.mrcieu.ac.uk/datasets/ukb-b-5779/

HAL High-frequency 
drinking with meals

Europeans 9,851,867 235,645 https://gwas.mrcieu.ac.uk/datasets/ukb-b-16878/

TEAI Tea intake Europeans 9,851,867 447,485 https://gwas.mrcieu.ac.uk/datasets/ukb-b-6066/

COFI Coffee intake Europeans 9,851,867 428,860 https://gwas.mrcieu.ac.uk/datasets/ukb-b-5237/

RWI Red wine intake Europeans 9,851,867 327,026 https://gwas.mrcieu.ac.uk/datasets/ukb-b-5239/

INS Insomnia Europeans 9,851,867 462,341 https://gwas.mrcieu.ac.uk/datasets/ukb-b-3957/

IE Inhibit excitability Europeans 9,851,867 460,913 https://gwas.mrcieu.ac.uk/datasets/ukb-b-5776/

SD Sleep duration Europeans 9,851,867 460,099 https://gwas.mrcieu.ac.uk/datasets/ukb-b-4424/
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effectively establish the causality relationship be-
tween DHDB and SDL.

To ascertain the overall causality, we utilized 
a rigorous approach. Instrumental variables were 
selected based on genome-wide significant single 
nucleotide polymorphisms (SNPs) (p < 5.0*10-8) 
from large-scale GWAS on DHDB and SDL. We en-
sured the independence of each SNP by applying 
a  stringent linkage disequilibrium (LD) threshold 
of r² < 0.001 and a distance of 10,000 kb. The LD 
function in the TwoSampleMR package was em-
ployed to exclude SNPs in linkage disequilibrium 
and ensure the independence of each SNP in the 
analysis [32, 35]. This method facilitated the ex-
clusion of linkage disequilibrium and further en-
sured the autonomy of each SNP in the analysis, 
thus enhancing the robustness of our findings.

Calculation analysis of five methods

We extracted information from the results da-
tabase and amalgamated it to align with effect 
alleles sharing the same exposure and outcome. 
Employing R software, we conducted statistical 
analyses across the five methods, ultimately de-
riving the anticipated positive results (p (inverse 
variance weighting – IVW) < 0.05) [36, 37].

Credibility of verification results

Upon obtaining positive results, we computed 
the causal effect estimate (b: regression coeffi-
cient), subsequently transforming it into an odds 
ratio (OR) [38]. The MR-Egger method, acknowl-
edged for providing direction-level pleiotropy es-
timates, was utilized. Additionally, four other me-
ta-analysis methods renowned for their reliability 
in detecting horizontal pleiotropy were employed: 
MR-Egger, weighted median, simple mode, and 
weighted mode analysis [32].

We assessed the credibility of the verification 
results by applying Q-statistics and analyzing the 
MR-Egger intercept term to evaluate substantial 
heterogeneity and directed pleiotropic effects [39, 
40]. In cases where p < 0.05 was observed in the 
Q-statistics method, random effects models were 
employed to assess the MR effect. These models 
were chosen to account for potential heteroge-
neity and pleiotropy, ensuring that our results re-
mained robust and reliable. In these models, p < 
0.05 indicated that the two samples could exclude 
heterogeneity. 

Visual analysis

We conducted a visual analysis to discern the 
impact of each SNP. The regression coefficient (b) 
for each SNP was computed, with both b and OR 
values serving as indicators for positive or nega-
tive effects on the outcome. The decision bound-

ary between positive and negative impacts was 
set at 0. A negative effect was inferred if the upper 
limit of the b within the confidence interval was 
less than 0; otherwise, it was regarded as a posi-
tive outcome.

Exploring the interaction between exposure 
and outcome, we employed scatter plots to cal-
culate correlation coefficients (R). A negative cor-
relation was represented by R < 0, while R > 0 de-
noted a positive correlation. A correlation of |R| = 
0 indicated no correlation, 0 < |R| < 0.3 represent-
ed a weak correlation, and 0.3 < |R| < 1 indicated 
a strong correlation. Subsequently, effective gene 
loci were visually identified through screening in 
forest plots [41–43].

Reverse MR analysis

In our exploration of the comprehensive causal 
relationship between DHDB and SDL, we conduct-
ed a reverse MR analysis, where SDL served as the 
exposure and DHDB as the result. We applied the 
same rigorous methodology as outlined in Section 
2.3 for reverse MR analysis. This included ensur-
ing the independence of SNPs, applying robust 
statistical methods, and verifying the credibility of 
results to observe bidirectional causality between 
SDL and DHDB. We applied the same methodology 
as outlined in Section 2.3, focusing on observing 
two-sample one-way or two-way correlations [44].

Results

Five statistical methods were employed with 
DHDB as the exposure and SDL as the outcome.

We did not detect a  causal relationship be-
tween ALI and IE, ALI and SD, ALF and INS, TEAI 
and INS, COFI and INS, COFI as well as SD, RWI and 
INS, RWI and IE, RWI as well as SD (p (IVW) > 0.05). 
Certain indicators of DHDB exhibited positive cor-
relations with SDL (p (IVW) < 0.05): ALI as well as 
INS; ALF and IE; ALF as well as SD; HAL and INS; 
HAL and IE; HAL and SD; TEAI and IE; TEAI and SD; 
COFI as well as IE. The IVW calculation result and 
the corresponding OR value (95% CI) were statisti-
cally significant (Supplementary Table SI).

Reliability of verification results

We initiated the heterogeneity analysis using 
MR-Egger regression with Q-statistics for the fol-
lowing pairs: ALI and INS; ALF and IE; ALF and SD; 
HAL and INS; HAL and IE; HAL and SD; TEAI and IE; 
TEAI and SD; COFI and IE. The p-values for these 
groupings were all below 0.05 (p (Q-statistics)  
< 0.05). Employing random effects models, the 
positive associations observed in the aforemen-
tioned groups yielded p (random effects models)  
< 0.05. In the pleiotropic test, no significant pleiotro-
pic effects were detected in the mentioned groups  
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(p (pleiotropic test) > 0.05). Overall, both hetero-
geneity and pleiotropic analyses supported the 
reliability of the study findings (Table II). 

Results of visualization analysis

Figure 1 shows OR estimates and 95% CI of 
the five methods. Positive results of MR calcula-
tions were evaluated utilizing visual scatter plots 
as well as forest plots (Figure 2). We observed the 
following correlations: ALI and INS – positively cor-
related (R = 0.44) (Figure 2A); ALF and IE – pos-
itively correlated (R = 0.25) (Figure 2B); ALF and 
SD – negatively correlated (R = –0.12) (Figure 2C); 
HAL and INS – negatively correlated (R = –0.55) 
(Figure 2D); HAL and IE: negatively correlated  
(R = –0.32) (Figure 2E); HAL and SD – positively 
correlated (R = 0.39) (Figure 2F); TEAI and IE – neg-
atively correlated (R = –0.33) (Figure 2G); TEAI and 
SD – positively correlated (R = 0.25) (Figure 2H); 
COFI and IE – negatively correlated (R = –0.36) 
(Figure 2I).

We calculated the b values for the regression 
coefficients of each SNP, identified significant 
gene loci, and created a forest plot database (Sup-
plementary Figure S1). The gene loci with poten-
tially significant effects are listed in Table III and 
Supplementary Table SII, which detail the selected 
effective gene loci.

Reverse MR analysis

A few indicators of SDL were found to be asso-
ciated with DHDB, as indicated by significant IVW 
calculation results: SD and ALF – b = –0.2536, se = 

0.09, p = 0.0043; INS and HAL – b = −0.0842, se = 
0.03, p = 0.0053.

We did not find any significant associations 
between SDL and other DHDB variables (p (IVW)  
> 0.05) (Table IV).

Discussion

In the contemporary landscape of genetic ex-
ploration into the associations between different 
beverage consumption patterns and sleep disor-
ders, it is paramount to contextualize our findings 
within the existing body of literature. Our study, 
utilizing MR, delves into the interplay between ge-
netic factors, drinking habits, and sleep outcomes. 
To bridge the gap between our findings and pre-
vious research, we draw upon the extensive liter-
ature on dietary habits, genetic factors, and their 
collective impact on health.

Diet, as an integral aspect of human life, has 
been extensively studied for its role in maintaining 
metabolism and contributing to various patholog-
ical changes [1–3]. The globalization of food prac-
tices and the transcending boundaries of bever-
ages such as alcoholic beverages, coffee, and tea 
highlight shifts in dietary patterns and lifestyle 
choices [5]. These global trends set the stage for 
our exploration into the genetic underpinnings of 
the relationships between different beverage con-
sumption patterns and sleep disorders.

Our study aligns with previous MR studies 
that have investigated the genetic associations 
between lifestyle factors and health outcomes, 
particularly in the context of alcohol consump-
tion. For instance, previous MR analyses have 

Table II. Heterogeneity and pleiotropic analysis for exposure and outcome

Exposure outcome Q-statistics Random effects 
models

Pleiotropic test

MR-Egger IVW p Egger_intercept p

ALI INS Q = 107.73
p = 3.96E-10

Q = 109.20
p = 4.37E-10

0.017482 0.000584 0.5142

ALF IE Q = 277.65
p = 4.94E-20

Q = 278.09
p = 7.40E-20

0.002802 0.000180 0.7013

ALF SD Q = 469.14
p = 3.26E-51

Q = 470.90
p = 3.61E-51

0.015085 –0.000560 0.5539

HAL INS Q = 126.69
p = 1.59E-13

Q = 126.71
p = 3.24E-13

0.000184 –0.000323 0.9396

HAL IE Q = 99.54
p = 4.08E-09

Q = 99.89
p = 6.60E-09

0.044255 0.000861 0.7428

HAL SD Q = 137.77
p = 2.05E-15

Q = 138.92
p = 2.80E-15

0.002821 0.002412 0.6152

TEAI IE Q = 98.33
p = 3.03E-07

Q = 106.07
p = 4.06E-08

0.001341 0.001159 0.0919

TEAI SD Q = 133.05
p = 1.78E-12

Q = 134.74
p = 1.83E-12

0.021921 0.000840 0.4918

COFI IE Q = 121.98
p =5.26E-11

Q = 131.36
p = 3.31E-12

0.002494 0.001194 0.1002
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Figure 1. Odds ratio (OR) estimates and 95% CI of the five methods. A – OR estimates and 95% CI of the five 
methods with ALI as the exposure and INS as the outcome. B – OR estimates and 95% CI of the five methods with 
ALF as the exposure and IE as the outcome. C – OR estimates and 95% CI of the five methods with ALF as the 
exposure and SD as the outcome. D – OR estimates and 95% CI of the five methods with HAL as the exposure and 
INS as the outcome

This figure shows the forest plots for OR estimates and 95% CI of the five methods: MR Egger, weighted median, IVW, simple 
mode, weighted mode. The standard line is the line of “X = 1” (red dashed line).

A p OR (95% CI) 

MR Egger 0.352 1.042 (0 957–1.13.4) 

Weighted median 0.024 1.050 (1.006–1.095)

IVW 0.017 1.066 (1.011–1.123) 

Simple mode 0.571 1.025 (0.942–1.116) 

Weighted mode 0.042 1.047 (1.003–1.092) 

B p OR (95% CI) 

MR Egger 0.331 1.018 (0.982–1.056)

Weighted median 0.422 1.006 (0.991–1.022)

IVW 0.003 1.025 (1.008–1.041)

Simple mode 0.367 1.022 (0.975–1.071) 

Weighted mode 0.905 0.999 (0.977–1.021) 

C p OR (95% CI) 

MR Egger 0.587 0.980 (0.911–1.054) 

Weighted median 0.086 0.975 (0.947–1.004)

IVW 0.015 0.961 (0.930–0.992) 

Simple mode 0.909 0.997 (0.941–1.055) 

Weighted mode 0.164 0.979 (0.951–1.008) 

D p OR (95% CI) 

MR Egger 0.686 0.820 (0.316–2.129)

Weighted median < 0.01 0.774 (0.697–0.860)

IVW < 0.001 0.790 (0.698–0.894)

Simple mode 0.014 0.748 (0.600–0.931)

Weighted mode 0.018 0.748 (0.595–0.940) 

 0.90 1.05 1.20

 0.9 1.0 1.1

 0.9 1.0 1.1

 0.3 0.5 0.7 0.9
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Figure 1. Cont. E – OR estimates and 95% CI of the five methods with HAL as the exposure and IE as the outcome. 
F – OR estimates and 95% CI of the five methods with HAL as the exposure and SD as the outcome. G – OR esti-
mates and 95% CI of the five methods with TEAI as the exposure and IE as the outcome. H – OR estimates and 
95% CI of the five methods with TEAI as the exposure and SD as the outcome. I – OR estimates and 95% CI of the 
five methods with COFI as the exposure and IE as the outcome

This figure shows the forest plots for OR estimates and 95% CI of the five methods: MR Egger, weighted median, IVW, simple 
mode, weighted mode. The standard line is the line of “X = 1” (red dashed line).

H p OR (95% C1) 

MR Egger 0.701 1.025 (0.904–1.163)

Weighted median 0.045 1.053 (1.001–1.107)

IVW 0.022 1.067 (1.009–1.128)

Simple mode 0.815 0.989 (0.899–1.087)

Weighted mode 0.345 1.027 (0.973–1.084) 

I p OR (95% C 

MR Egger 0.005 0.878 (0.806–0.956)

Weighted median < 0.001 0.906 (0.869–0.944)

IVW 0.002 0.935 (0.896–0.977)

Simple mode 0.512 1.045 (0.917–1.192)

Weighted mode < 0.001 0.900 (0.868–0.933) 

E p OR (95% CI) 

MR Egger 0.560 0.838 (0.466–1.508) 

Weighted median 0.067 0.938 (0.876–1.004)

IVW 0.044 0.925 (0.857–0.998)

Simple mode 0.281 0.920 (0.793–1.068)

Weighted mode 0.250 0.923 (0.808–1.055) 

F p OR (95% CI) 

MR Egger 0.909 0.939 (0.321–2.742)

Weighted median 0.019 1.151 (1.023–1.294)

IVW 0.003 1.236 (1.076–1.421)

Simple mode 0.457 1.100 (0.858–1.412)

Weighted mode 0.526 1.081 (0.852–1.372) 

G p OR (95% C1) 

MR Egger 0.005 0.899 (0.838–0.963) 

Weighted median < 0.001 0.920 (0.890–0.950)

IVW 0.001 0.949 (0.920–0.980)

Simple mode 0.172 0.951 (0.865–1.021)

Weighted mode < 0.001 0.914 (0.885–0.944) 

 0.90 1.05 1.20

 0.8 1.0 1.2

 0.80 0.95 1.10

 1.0 1.2 1.4

 0.8 0.9 1.0
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Figure 2. Scatter plots for significant SNPs with DHDB as the exposure and SDL as the outcomes

IVW – trend line of inverse variance weighting, R – correlation coefficient.
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Figure 2. Cont. Scatter plots for significant SNPs 
with DHDB as the exposure and SDL as the out-
comes

IVW – trend line of inverse variance weighting,  
R – correlation coefficient.

SD

IE
IE

0.005

0

–0.005

–0.010

0.0050

0.0025

0

–0.0025

–0.0050

0.0025

0

–0.0025

–0.0050

R = 0.25R = –0.33

R = –0.36

 –0.075 –0.050 –0.025 0 0.025 0.050

TEAI
 –0.075 –0.050 –0.025 0 0.025 0.050

TEAI

 –0.025 0 0.025 0.050

COFI

demonstrated a causal relationship between alco-
hol intake and various health conditions, such as 
cardiovascular diseases and metabolic syndrome 
[6–12]. These studies provide a  foundation for 
understanding the complex genetic interplay be-
tween alcohol consumption and sleep disorders. 
Through MR, we contribute to the evolving under-
standing of how genetic factors may modulate the 
effects of alcohol on sleep patterns.

Moreover, the incorporation of coffee and tea 
into the study is informed by their ubiquitous 
presence in modern workplaces, where their con-
sumption is noted for potential improvements 
in concentration and work efficiency [21]. Our 
hypothesis that different beverage consumption 
patterns may exert diverse effects on sleep dis-
orders stems from the varying habits surround-
ing beverage intake and their implications for the 
body’s excitement levels [22]. However, variations 
in age, personality, or social status among clini-
cally participating volunteers introduce challeng-

es in isolating and studying specific habits inde-
pendently [45].

To address this, we propose the utilization of MR 
approaches as an alternative to studying habits in 
clinical settings. MR approaches involve replacing 
clinical diseases or pathological states with sta-
bly expressed genes that adhere to Mendel’s first 
and second laws of inheritance. This means that 
during meiotic gamete formation, parental alleles 
are randomly passed on to offspring, maintaining 
a relationship between genes and outcomes that 
is not influenced by common confounding factors. 
By employing MR, we navigate the intricate genet-
ic landscape that potentially mediates the impact 
of these beverages on sleep outcomes.

The recognition of the uniqueness of individual 
lifestyles and the divergence in phenotypes, even 
among identical twins, adds depth to our under-
standing [46]. As emphasized by researchers, the 
stability and excessive alteration of lifestyle habits 
can result in physiological and pathological effects, 
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influenced by multiple factors, including dietary 
habits, exercise, and occupation [47]. This aligns 
with our cautionary note on the need for prudence 
in formulating clinical recommendations based 
solely on statistical findings from MR studies.

Our predictions regarding the frequency of 
alcohol intake as a  major factor in sleep distur-
bances resonate with the complex relationship 
between alcohol content, drinking frequency, and 
sleep outcomes [12]. Genetic variants in genes 
involved in alcohol metabolism (e.g., ADH1B, 
ALDH2) may influence individual responses to al-
cohol, thereby modulating its impact on sleep [48]. 
These findings align with the observed genetic 
link between alcohol intake and insomnia in our 
study. The speculation about the potential bene-
fits of consuming alcohol with meals to address 
sleep disorders adds nuance to our findings, point-
ing towards a potential interplay of dietary habits 
and sleep patterns.

Beyond the foods highlighted in the aforemen-
tioned article, other dietary choices can impact 
sleep quality. Spicy and irritating foods, raw or 
cold items, and overly greasy meals warrant at-
tention for those aiming to maintain a  healthy 
diet and improve sleep. Consumption of spicy 
foods may lead to irritation of the oral and gas-
trointestinal mucosa, resulting in symptoms such 
as sore throat and abdominal pain, significantly 
undermining sleep quality. Likewise, excessively 
cold foods may trigger abdominal blood vessel 
constriction, causing gastrointestinal cramps and 
abdominal pain, hindering sleep. Furthermore, 
indulging in overly greasy foods before bedtime 

can strain the digestive system during its resting 
phase, potentially compromising sleep quality. To 
optimize sleep, it is crucial to be mindful of food 
and beverage choices that might adversely impact 
sleep patterns before heading to bed [49].

Building on existing studies that have explored 
the impact of energy drinks and caffeinated 
beverages on sleep and mood [50], our research 
contributes to the growing body of evidence 
demonstrating the relationship between different 
beverage types and sleep. The differentiation in 
results between tea and coffee consumption sug-
gests nuanced effects on drowsiness and sleep 
recovery, indicating the need for further investi-
gation into the underlying mechanisms. Caffeine, 
a  central nervous system stimulant, exerts its 
wake-promoting effects by antagonizing adenos-
ine receptors, reducing the drive for sleep [51]. The 
presence of L-theanine in tea, which can promote 
relaxation, may offset some of caffeine’s stimu-
lant effects, explaining the differential impact of 
tea and coffee on sleep outcomes observed in our 
study [52].

By employing genes as representatives for 
habits or pathological states, we can effectively 
exclude the impact of age, personality, or social 
status. This approach is particularly suitable for 
research scenarios where direct clinical trials are 
challenging or when numerous influencing factors 
complicate trial implementation. By synthesizing 
insights from previous research on dietary habits, 
genetic factors, and health outcomes, our find-
ings contribute to the broader understanding of 
the complex interconnections between lifestyle, 

Table III. Significant SNPs for DHDB-SDL pairs 

DHDB-SDL pair Significant SNPs (total) Total SNPs

ALI and INS rs1229984, rs28680958, rs153106, rs6969458, rs34121753, rs17542254, 
rs28929474, rs4752999

8

ALF and IE rs2411453, rs34811474, rs35105141, rs650558, rs1937522, rs62466318, 
rs61873510, rs2043677, rs58905411, rs7610856, rs9958320, rs1228589, 

rs780094, rs780569, rs13135092

15

ALF and SD rs2717063, rs1421085, rs13135092, rs73050128, rs8043563, rs2924321, 
rs17690703, rs2160935, rs58905411, rs28768122, rs186347, rs12153855, rs8614, 

rs1515591, rs28622224, rs1228589, rs550942, rs7610856, rs13102973

19

HAL and INS rs2820309, rs641325, rs7851830, rs13246732, rs10865037, rs898751, rs4636654, 
rs11781870, rs11783227, rs72720396, rs58734839, rs6805189, rs9661233

13

HAL and IE rs2820309, rs1291836, rs13246732, rs72720396, rs6805189, rs1714081, 
rs58734839

7

HAL and SD rs1714081, rs58734839, rs1526912, rs2016975, rs6805189, rs2860872, 
rs11783227, rs72720396, rs13246732, rs2820309, rs4636654

11

TEAI and IE rs72797284, rs10764990, rs2472297, rs17685, rs2645929, rs4410790, 
rs10741694

7

TEAI and SD rs1481012, rs9624470, rs9302428, rs13282783, rs132904, rs72797284, 
rs2645929, rs9937354

8

COFI and IE rs780093, rs12989746, rs13054099, rs2472297, rs6469262, rs1057868, 
rs4410790, rs6063085

8
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Table IV. Five statistical methods in reverse MR analysis with exposure and outcome

Exposure Outcome Method NSNP b SE P-value

INS ALI MR-Egger 34 0.0751 0.17 0.6676

Weighted median 0.0981 0.05 0.0568

Inverse variance weighted 0.0948 0.06 0.0870

Simple mode 0.1251 0.09 0.1538

Weighted mode 0.1113 0.07 0.1095

IE ALF MR-Egger 31 0.3422 1.29 0.7922

Weighted median 0.4248 0.14 0.0018

Inverse variance weighted 0.3806 0.28 0.1755

Simple mode 0.5797 0.26 0.0323

Weighted mode 0.5560 0.23 0.0204

SD ALF MR-Egger 69 –0.2208 0.34 0.5229

Weighted median –0.0334 0.06 0.6017

Inverse variance weighted –0.2536 0.09 0.0043

Simple mode 0.0824 0.13 0.5155

Weighted mode 0.0824 0.09 0.3516

INS HAL MR-Egger 39 –0.0873 0.10 0.3770

Weighted median –0.1113 0.03 0.0006

Inverse variance weighted –0.0842 0.03 0.01

Simple mode –0.0801 0.07 0.2507

Weighted mode –0.0937 0.05 0.0863

IE HAL MR-Egger 31 –0.4739 0.28 0.1038

Weighted median 0.0681 0.06 0.2427

Inverse variance weighted 0.0189 0.06 0.7714

Simple mode 0.1500 0.15 0.3278

Weighted mode 0.1453 0.12 0.2430

SD HAL MR-Egger 69 –0.0694 0.12 0.5634

Weighted median 0.0265 0.03 0.3457

Inverse variance weighted 0.0474 0.03 0.1272

Simple mode 0.1076 0.08 0.1960

Weighted mode 0.0210 0.05 0.6807

IE TEAI MR-Egger 31 –0.6080 0.41 0.1463

Weighted median –0.1869 0.09 0.0390

Inverse variance weighted –0.0962 0.09 0.2931

Simple mode –0.2135 0.21 0.3107

Weighted mode –0.2538 0.15 0.1066

SD TEAI MR-Egger 69 0.1032 0.16 0.5164

Weighted median 0.0159 0.04 0.6964

Inverse variance weighted 0.0459 0.04 0.2618

Simple mode –0.0020 0.11 0.9856

Weighted mode 0.0360 0.10 0.7206

IE COFI MR-Egger 31 0.4377 0.45 0.3344

Weighted median 0.0215 0.07 0.7453

Inverse variance weighted 0.0950 0.10 0.3338

Simple mode –0.0166 0.10 0.8748

Weighted mode –0.0087 0.09 0.9253

Methods: MR-Egger, weighted median, IVW, simple mode, weighted mode; b – risk index, SE – standard error.
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genetics, and sleep. As we move forward, the in-
tegration of genetic perspectives into lifestyle re-
search holds the potential for personalized inter-
ventions and targeted health recommendations. 
Such personalized approaches could enhance 
clinical practices by tailoring dietary and lifestyle 
interventions to the genetic profiles of individuals, 
thereby improving the management of sleep dis-
orders and overall health outcomes.

The research leveraged Mendelian randomiza-
tion to explore genetic links between DHDB and 
the likelihood of developing SDL. The findings 
offer crucial perspectives on these relationships. 
Specifically, alcohol consumption was identified 
as a potential contributor to insomnia, while fre-
quent alcohol intake may be linked to increased 
daytime sleepiness and reduced sleep duration. 
Notably, regular alcohol consumption during 
meals appeared to reduce the likelihood of in-
somnia, decrease daytime sleepiness, and extend 
overall sleep duration. Tea consumption was not 
linked to a higher likelihood of insomnia and was 
found to reduce daytime drowsiness, possibly 
enhancing daytime sleep. Coffee intake was as-
sociated with reduced daytime excitability while 
not inducing insomnia or altering overall sleep 
duration. In contrast, red wine consumption did 
not show a significant association with insomnia, 
daytime sleepiness, or total sleep time.

However, the study is not without limitations. 
Mendelian randomization primarily assesses the 
genetic predisposition to certain outcomes and 
does not account for the multifaceted nature of 
sleep disorders, which may be influenced by a com-
bination of lifestyle and genetic factors. Moreover, 
the study’s reliance on existing databases restricts 
its focus to the causality and trends identified 
within these datasets. Consequently, while the re-
sults offer valuable genetic insights, they should be 
interpreted with caution, as Mendelian random-
ization alone cannot establish a  definitive causal 
relationship. These findings should be supplement-
ed by further research, including clinical trials and 
animal studies, to better understand the complex 
interplay of factors influencing sleep disorders.

Future investigations could broaden the scope 
by examining additional beverages, such as ener-
gy drinks or herbal teas, to determine their genet-
ic associations with sleep disorders. Furthermore, 
exploring more detailed sleep parameters, such as 
sleep quality, latency, and the incidence of sleep 
apnea, could provide a more comprehensive un-
derstanding of how different drinking habits im-
pact sleep health. Employing advanced genetic 
techniques, such as multivariable Mendelian ran-
domization or polygenic risk score analyses, might 
also help refine or challenge these findings, offer-
ing a  more nuanced perspective on the genetic 
underpinnings of sleep disorders.
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