
Research paper

Comparative investigation of immune-related biomarkers
related to alopecia areata subtypes

 Keywords
Alopecia areata, T cell subtypes, Differentially expressed RNAs

 Abstract
Introduction
The study aimed to explore the underlying immunologic mechanisms and immune-related biomarkers
associated with alopecia areata (AA) development.

Material and methods
Expression data from the GSE68801 dataset, comprising 60 individuals with alopecia areata (28
patchy-type AA (AAP), 23 alopecia universalis (AU), 9 alopecia totalis (AT)), and 36 normal controls
(NC) were analyzed. The study investigated differentially expressed RNAs (DERs), immune infiltration,
and immune-related modules. Functional enrichment analysis of overlapping DERs was conducted
using DAVID. Additionally, overlapping pathways and genes identified in a co-expression network,
along with data from the Comparative Toxicogenomics Database 2019 update, were screened.

Results
There were 1708 lncRNAs and 17,326 mRNAs, along with 427 overlapping DERs among AAP, AU,
AT, and NC, were identified. Subsequently, 17 biological processes significantly associated with
inflammatory and immune responses, as well as 8 KEGG signaling pathways, including the chemokine
and cytokine-cytokine receptor interaction pathway, were enriched. Notable differences in the
infiltration of four T cell subtypes—activated CD8 T cells, effector memory CD8 T cells, regulatory T
cells, as well as plasmacytoid dendritic cells—were observed compared to NC. Two modules were
found to be significantly linked to disease stage progression and various T cell types. Functional
analysis revealed significant enrichment of cytokine-cytokine receptor interaction and the T cell
receptor signaling pathway among the genes involved in these modules. Furthermore, CXCL9 and
CXCL10 were identified as key nodes associated with the disease.

Conclusions
Our study indicates that AA is an autoimmune disease associated with T cells, with CXCL9 and
CXCL10 emerging as significant prognostic factors in its development.Prep
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Abstract 

Objective: The study aimed to explore the underlying immunologic mechanisms and 

immune-related biomarkers associated with alopecia areata (AA) development. 

 

Materials and Methods: Expression data from the GSE68801 dataset, comprising 60 

individuals with alopecia areata (28 patchy-type AA (AAP), 23 alopecia universalis 

(AU), 9 alopecia totalis (AT)), and 36 normal controls (NC) were analyzed. The study 

investigated differentially expressed RNAs (DERs), immune infiltration, and immune-

related modules. Functional enrichment analysis of overlapping DERs was conducted 

using DAVID. Additionally, overlapping pathways and genes identified in a co-

expression network, along with data from the Comparative Toxicogenomics Database 

2019 update, were screened. 

 

Results: In total, there were 1708 lncRNAs and 17,326 mRNAs, along with 427 
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overlapping DERs among AAP, AU, AT, and NC, were identified. Subsequently, 17 

biological processes significantly associated with inflammatory and immune responses, 

as well as 8 KEGG signaling pathways, including the chemokine and cytokine-cytokine 

receptor interaction pathway, were enriched. Notable differences in the infiltration of 

four T cell subtypes—activated CD8 T cells, effector memory CD8 T cells, regulatory 

T cells, as well as plasmacytoid dendritic cells—were observed compared to NC. Two 

modules were found to be significantly linked to disease stage progression and various 

T cell types. Functional analysis revealed significant enrichment of cytokine-cytokine 

receptor interaction and the T cell receptor signaling pathway among the genes involved 

in these modules. Furthermore, CXCL9 and CXCL10 were identified as key nodes 

associated with the disease. 

 

Conclusion: Our study indicates that AA is an autoimmune disease associated with T 

cells, with CXCL9 and CXCL10 emerging as significant prognostic factors in its 

development.  

Keywords: Alopecia areata; Differentially expressed RNAs; T cell subtypes 
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1.0 Introduction 

Alopecia areata (AA) stands as a prevalent autoimmune skin condition marked by 

distinct circular areas of hair loss. Current treatments for AA predominantly revolve 

around broad immune suppression or topical immunotherapy [1, 2]. Nevertheless, the 

efficacy of these treatments remains debatable. A thorough comprehension of the 

disease's underlying mechanisms is imperative for the advancement of innovative 

therapeutic approaches. 

 

Presently, the precise pathophysiology of AA has not been thoroughly investigated. 

Previous research consistently suggests that the disease's etiology is associated with an 

autoimmune response targeting hair follicles. Histopathological examination reveals a 

peribulbar lymphocytic infiltrate surrounding anagen follicles, predominantly 

composed of CD4+ and CD8+ T-cells during acute and subacute stages [3].  

 

Additionally, other immune cells such as macrophages, natural killer cells, and mast 

cells are also present [4]. AA typically manifests in three primary phenotypic variants: 

alopecia totalis (AT), alopecia universalis (AU), and patchy-type AA (AAP). Recent 

studies have highlighted the involvement of novel molecular pathways and immune-

related molecules in AA development. A meta-analysis conducted by Betz et al. 

underscored the significant association between human leukocyte antigen-DR and T 

cells as the primary risk factor for AA [5]. Petukhova and colleagues identified genes 

related to natural killer cell receptor D ligands as potential influencers of AA 

susceptibility [6]. However, the distinct pathogenic mechanisms underlying these three 

disease variants remain elusive. 

 

Hence, our study was devised to delve into the genetic and immunological 

underpinnings of AA. We screened for differentially expressed genes and investigated 

disease progression along with immune-related modules across AAP, AU, and AT. 

Furthermore, we analyzed the infiltration levels of immune cells in these groups. Our 

findings reveal a significant association between AA development and the infiltration 
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of specific immune cell subtypes. Additionally, we substantiated the pivotal role of 

CXCL9 and CXCL10 in AA progression. 

 

2.0 Material and methods 

2.1 Data sources 

In this study, GSE68801 [7] dataset was downloaded from the NCBI GEO 

(https://www.ncbi.nlm.nih.gov/) [8] database, which provides a comprehensive 

expression profile of scalp skin biopsies from individuals with various subtypes of 

alopecia areata (AA) and normal controls. This dataset was selected due to its extensive 

sample size and representation of different AA subtypes, enabling a robust comparative 

analysis. The detection platform for this expression profile data was GPL570 [HG-

U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. The dataset comprised 

122 scalp skin biopsies obtained from individuals with AA and normal healthy controls 

(NC). Specifically, there were 36 samples from healthy controls, and 86 samples from 

individuals with AA (comprising 28 lesional samples and 26 nonlesional samples from 

AAP, 23 lesional samples from AU, and 9 lesional samples from AT). For consistency 

in our analysis, we excluded gene expression profiling data from 26 nonlesional 

samples from AAP. 

 

2.2 Differentially expressed RNAs (DERs) exploration 

We retrieved comprehensive annotation information related to the platform from 

GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array via the 

Ensembl genome browser 96 database (http://asia.ensembl.org/index.html). This 

information encompassed probes, gene symbols, RNA types, as well as other relevant 

details. Subsequently, we re-annotated the probes in the downloaded expression profile 

dataset to acquire the respective expression levels of both lncRNAs and mRNAs. 

Selection Criteria and Relevance: 

We selected lncRNAs and mRNAs for our analysis because they play crucial roles in 

the regulation of gene expression and are involved in various biological processes, 

including immune responses and inflammation. LncRNAs were chosen due to their 
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ability to modulate immune responses through mechanisms such as acting as molecular 

scaffolds, decoys, or guides for chromatin-modifying complexes, thereby influencing 

the transcription of immune-related genes. mRNAs were selected because they encode 

proteins that are directly involved in immune signaling pathways and cellular responses. 

Analyzing both lncRNAs and mRNAs allowed us to capture a comprehensive picture 

of the transcriptional changes associated with AA and identify potential biomarkers and 

therapeutic targets. 

 

The samples were categorized into three comparison groups: AAP vs. NC, AU vs. NC, 

and AT vs. NC. Differential expression analyses were conducted using the limma 

package Version 3.34 in R3.6.1 [9]. We set the threshold at FDR<0.05 and 

|log2FC|>0.263 to identify significantly differentially expressed regions (DERs) 

between the groups. Subsequently, bi-directional hierarchical clustering [10, 11] was 

performed using the pheatmap package (Version 1.0.8) [12] in R3.6.1. This clustering 

utilized the expression values of DERs obtained from each group and was based on 

Euclidean distance. Finally, the clustering results were visualized using a heatmap. 

We retained the overlapping differentially expressed regions (DERs) identified across 

the three comparison groups for further analysis. Gene Ontology (GO) biological 

process and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway 

enrichment analyses were conducted using DAVID (version 6.8) [13]. A significance 

threshold of p<0.05 was applied to select the enriched terms. 

 

2.3 Evaluate immune cells subsets using the single sample Gene Set Enrichment 

Analysis (ssGSEA) algorithm 

The microenvironment component primarily encompasses fibroblasts, the extracellular 

matrix, immune cells, diverse growth and inflammatory factors, and distinctive 

physical characteristics. These elements exert a profound influence on disease diagnosis, 

survival outcomes, and clinical treatment sensitivity. Intricate and significant 

interactions exist among different cell types, leading to robust patterns of cell 

infiltration. 
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To assess the subtype of immune infiltration in the combined sample, immunologic 

signature gene sets were obtained from the GSEA database [14]. Subsequently, the type 

of immune infiltration in the combined sample was evaluated using the gene set 

variation analysis for microarray and RNA-Seq data package (GSVA, Version 1.36.3) 

[15]. GSVA, a non-parametric unsupervised analysis, was employed to determine 

whether various immune infiltrations were enriched in different samples based on the 

type of immune cell infiltration. Following this, the differences in the proportion of 

individual immune cells between AA samples and normal controls were analyzed.  

 

2.4 Screening of disease progression and immune-related modules using weighted 

gene co-expression network analysis (WGCNA)  

WGCNA is a bioinformatics algorithm utilized for constructing co-expression networks, 

facilitating the exploration of disease-related modules and the identification of potential 

therapeutic targets or pathogenic mechanisms [16]. We employed the WGCNA package 

(Version 1.61) [17] in the R3.6.1 language to identify modules significantly linked to 

both the sample stage and immune cells based on the expression levels of all RNAs 

detected in GSE68801. In this analysis, we set a threshold for the module size to contain 

at least 100 differentially expressed regions (DERs) (cutHeight = 0.995). Subsequently, 

we assessed the correlation between the identified modules, the stage of AA, and 

subsets of immune cells. 

 

The shared differentially expressed regions (DERs) identified across the three 

comparison groups were assigned to each WGCNA module. Fold enrichment and p-

values of the DERs within each module were computed using the hypergeometric 

algorithm [18], expressed as f(k,N,M,n) = C(k,M)*C(n-k,N-M)/C(n,N) (where N 

represents all RNAs involved in WGCNA analysis, M represents the number of RNA 

factors in each module, n represents the number of significantly different RNAs 

screened in step 2, and k represents the count of DERs mapped to the respective 

module). 

The criterion for selecting modules was established as p<0.05 and fold enrichment>1. 
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DERs exhibiting significant enrichment within the target module were selected for 

further analysis. 

 

2.5 Construction of co-expression network 

The Pearson correlation coefficient (PCC) was computed for significantly enriched 

genes and lncRNAs within the target module utilizing the cor function in the R3.6.1 

language. The resulting co-expression network was visualized utilizing Cytoscape 3.6.1 

[19]. Connection pairs with a significance p-value below 0.05 as well as a significant 

absolute PCC value exceeding 0.7 were retained. Subsequently, KEGG pathway 

analysis was conducted using the DAVID tool [20]. 

 

2.6 Screen of key genes 

To investigate KEGG pathways and disease-related genes associated with AA, we 

utilized the Comparative Toxicogenomics Database 2019 update [21]. We employed 

"Alopecia Areata" as the keyword for our analysis. Additionally, we selected 

overlapping pathways and genes identified in the previously constructed co-expression 

network and the current results to construct pathways linked to AA. Furthermore, we 

screened for overlapping lncRNAs and DERs. 

 

3.0 Results 

3.1 DERs selection 

A combined count of 1708 lncRNAs and 17,326 mRNAs were collected. Based on the 

sample's source stage, we divided them into three comparison groups: AAP vs. NC, AU 

vs. NC, and AT vs. NC. Subsequently, we identified 1076, 781, and 867 DERs in AAP 

vs. NC, AU vs. NC, and AT vs. NC, respectively. The volcano plot and hierarchical 

clustering heatmap are depicted in Figure 1. The clustering heatmap reveals that the 

expression values of the DERs identified in each comparison group could be 

distinguished according to different sample types. The distinct colors indicate that the 

DERs possess unique expression characteristics in each group.  
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The overlapping differentially expressed regions (DERs) identified in the three 

comparison groups were analyzed, resulting in a total of 427 overlapping genes, 

comprising 29 lncRNAs and 398 mRNAs. Functional enrichment analysis revealed that 

these DERs were significantly enriched in 17 related biological processes, including 

inflammatory response, adaptive immune response, and cell-cell signaling, as well as 8 

KEGG signaling pathways, such as the chemokine signaling pathway, hematopoietic 

cell lineage, and cytokine-cytokine receptor interaction (refer to Figure 2 and Table 1). 

 

3.2 The immune cell subsets in AA 

Utilizing ssGSEA, we identified 28 immune cell types associated with the three forms 

of AA. Subsequently, we compared the proportions of these immune cells across the 

three comparison groups. Significant differences in four immune cell types were 

observed compared to NC, including activated CD8 T cells, effector memory CD8 T 

cells, regulatory T cells, as well as plasmacytoid dendritic cells (refer to Figure 3). 

Notably, three out of the four immune cells were T cells, indicating that AA is a 

lymphocyte-mediated autoimmune disorder. 

 

3.3 Disease progression and immune-related modules 

We evaluated the weight parameter power of the adjacency matrix to ensure compliance 

with the requirements of a scale-free network distribution. As depicted in Figure 4A, 

the power reached 12 when the square value of the correlation coefficient initially 

reached 0.9. At this juncture, the average node connectivity of the co-expression 

network was 1, aligning perfectly with the characteristics of a small-world network. 

Subsequently, we computed the dissimilarity coefficient between nodes and generated 

the hierarchical clustering tree. We then established a minimum of 100 genes for each 

module, with a pruning height cutHeight set to 0.995. As illustrated in Figure 4B, a sum 

of 9 modules were identified. Following this, we calculated the correlation between the 

disease status of the samples, immune grouping, and the division of each module. 
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Additionally, 427 overlapping DERs were assigned to each WGCNA module, resulting 

in a total of 419 RNAs being allocated across the modules. Table 2 illustrates that DERs 

are notably enriched in the brown and red modules, encompassing 197 and 118 DERs, 

respectively. Among these DERs are 12 lncRNAs and 303 mRNAs. Figure 4C 

demonstrates a significant negative correlation between the brown module and disease 

progression as well as various T cell subsets, whereas the red module exhibits a 

significant positive correlation with disease progression and T cell subsets.  

 

3.4 The co-expression network 

A sum of 583 co-expression pairs were identified, and subsequently, the lncRNAs-

mRNAs co-expression pair network was constructed (refer to Figure 5). 

 

The functional analysis revealed significant enrichment of the genes within the co-

expression network in ten KEGG pathways, including the T cell receptor signaling 

pathway, cytokine-cytokine receptor interaction, and primary immunodeficiency (refer 

to Table 3). 

 

3.5 Important biomarkers related to AA 

Using "Alopecia Areata" as a keyword search in the CTD database, we identified 24 

KEGG signaling pathways and 10 genes directly linked to the disease. Among these, 8 

pathways overlapped (marked with "*") in Table 3. Notably, CXCL9 and CXCL10 were 

found to be directly linked to the overlapping disease within the pathways. ROC 

analysis was conducted to assess the sensitivity and specificity of CXCL9 and CXCL10 

in discriminating AA patients from controls, resulting in notably high AUC values of 

0.87 and 0.836, respectively (refer to Figure 6a and Figure 6b). Additionally, analysis 

of GSE80342 yielded similar results, demonstrating significantly elevated expression 

levels of CXCL9 and CXCL10 in AA patients compared to controls (refer to Figure 6c).  

 

Figure 7 illustrates the involvement of CXCL9 and CXCL10 in three KEGG pathways: 

the chemokine signaling pathway, cytokine-cytokine receptor interaction, and Toll-like 
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receptor signaling pathway. Furthermore, the expression levels of CXCL9 and CXCL10 

showed significant associations with lncRNAs, such as MIR155HG and TSPOAP1-

AS1. Additionally, other important immune-related genes, namely CCL13 and IL-21R, 

were also found to be involved in the pathways associated with CXCL9 and CXCL10. 

 

4.0 Discussion 

Alopecia areata (AA) is a multifaceted T cell-mediated autoimmune ailment. 

Conventional treatments for the condition exhibit only moderate efficacy, underscoring 

the urgent need for novel therapeutic approaches. Thus, our study was crafted to 

uncover new biomarkers associated with AA progression. We analyzed a 

comprehensive dataset comprising 1708 lncRNAs and 17,326 mRNAs, identifying 427 

overlapping DERs across AAP, AU, AT, and NC. Notably, these DERs were markedly 

enriched in biological processes linked to inflammatory and adaptive immune 

responses, as well as in KEGG signaling pathways such as chemokine and cytokine-

cytokine receptor interaction. Furthermore, our investigation revealed significant 

associations between AA and activated CD8 T cells, effector memory CD8 T cells, 

regulatory T cells, as well as plasmacytoid dendritic cells. Lastly, we identified various 

genes—including CXCL9, CXCL10, MIR155HG, TSPOAP1-AS1, CCL13, and IL-

21R—that exhibited significant correlations with the disease. 

 

Traditionally, AA has been attributed to cell-mediated immune responses [22]. Prior 

studies have explored various strategies for treating AA, such as stem cell educator 

therapy, though their precise roles in AA remain unclear [23]. Our findings indicated a 

correlation between AA and the activation of CD8 T cells, effector memory CD8 T cells, 

regulatory T cells, as well as plasmacytoid dendritic cells. Extensive research has 

elucidated the involvement of diverse T cell subsets in AA pathogenesis. For instance, 

Czarnowicki et al. demonstrated a relationship between the activation of T-helper 2 

cells and disease severity, with IFN-gamma levels impacting disease chronicity [24]. 

Similarly, Elela et al. identified Th17 cells as synergistically involved in AA 

pathogenesis [25]. Furthermore, our analysis revealed significant enrichment of DERs 

Prep
rin

t



in biological processes associated with inflammatory and adaptive immune responses, 

as well as in KEGG signaling pathways such as chemokine and cytokine-cytokine 

receptor interaction. Notably, elevated levels of IFN-γ, known to play a pivotal role in 

AA pathogenesis, have been observed in AA patients [26]. Consistent with our findings, 

prior evidence suggests that CD8+ T cell infiltration and associated cytokines are 

essential for AA induction [27]. In summary, our data support the characterization of 

AA as a T cell-mediated autoimmune disease. 

 

The chemokines CXCL9 and CXCL10, known for their role as chemoattractants for 

lymphocytes, have been reported to exhibit significant elevation in the early stages of 

AA [28]. They have been identified as valuable biomarkers for both diagnosing and 

treating AA [29]. In our study, we found a significant association between CXCL9 and 

CXCL10 and AA, with elevated levels in lesional samples of AA patients. CXCL10, 

induced by IFN-γ, is known to amplify polarized Th1 responses, which are critical in 

the pathogenesis of AA [30]. The accumulation of lymphocytes around hair bulbs is 

widely recognized as a hallmark pathological change in AA [2]. Our findings suggest 

that CXCL9 and CXCL10 contribute to AA development through the chemokine 

interaction pathway. Previous studies have shown that CXCL10 levels correlate with 

AA severity, supporting our results [28]. Moreover, molecular inhibition of CXCL9 and 

CXCL10 has been proposed as a potential therapeutic approach, which aligns with our 

findings [29]. These chemokines may serve as both biomarkers and therapeutic targets 

in AA, emphasizing their dual role in disease pathogenesis and management. 

 

Recent studies have further elucidated the role of CXCL9 and CXCL10 in autoimmune 

conditions beyond AA. For example, their involvement in the pathophysiology of 

diseases such as systemic lupus erythematosus and rheumatoid arthritis has been well-

documented, highlighting their broader significance in autoimmune disease 

mechanisms [31,32]. This broader context underscores the importance of our findings 

and suggests potential cross-disease therapeutic strategies targeting these chemokines. 
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Additionally, our analysis highlighted two other lncRNAs, MIR155HG and TSPOAP1-

AS1, along with two genes, CCL13 and IL21R, as significant factors in AA progression. 

Previous studies have indicated the involvement of numerous immune-related genes 

and various cell types, including cytotoxic lymphocytes, T cells, and myeloid dendritic 

cells, in the functions of CCL13 and IL21R, suggesting their significant roles in AA 

risk [33]. Notably, our findings revealed associations between the expression levels of 

CXCL9 and CXCL10 and the lncRNAs MIR155HG and TSPOAP1-AS1. Although no 

direct evidence currently supports the involvement of MIR155HG and TSPOAP1-AS1 

in AA development, our results suggest their potential implication in AA pathogenesis.  

 

Recent literature has also highlighted contrasting findings regarding the role of 

lncRNAs in autoimmune diseases. Some studies suggest that other lncRNAs may play 

a more significant role in disease mechanisms, indicating a need for further exploration 

and validation of our findings in different cohorts and with additional biomarkers 

[34,35]. 

 

Furthermore, recent research has provided more insights into the immune mechanisms 

involved in AA. For instance, Kim et al. (2022) investigated the ex vivo treatment of 

peripheral blood mononuclear cells from AA patients with allogenic mesenchymal stem 

cells, targeting dysregulated T cells and promoting immunotolerance [36]. Similarly, 

Waśkiel-Burnat et al. (2021) examined the role of serum Th1, Th2, and Th17 cytokines 

in AA patients, offering clinical implications for these cytokine profiles in disease 

management [37]. 

 

However, it is essential to acknowledge certain limitations. Our assessment of these 

genes' roles in AA was based on statistical analyses, and while this approach has been 

validated by numerous researchers, it is imperative to verify our bioinformatics 

predictions through clinical experiments. Future studies should focus on longitudinal 

data and functional assays to confirm the clinical relevance of these biomarkers in AA. 
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Our findings underscore the potential of identified biomarkers such as CXCL9, 

CXCL10, MIR155HG, TSPOAP1-AS1, CCL13, and IL-21R to serve not only as 

diagnostic indicators but also as therapeutic targets. Integrating these biomarkers into 

clinical practice could enhance the precision of AA diagnosis, facilitate personalized 

treatment approaches, and potentially lead to more effective management strategies for 

patients. 

 

5.0 Conclusion 

In conclusion, our study provides a comprehensive analysis of immune-related 

biomarkers associated with different AA subtypes. The inclusion of recent studies has 

further strengthened our findings, highlighting the importance of CXCL9, CXCL10, 

MIR155HG, TSPOAP1-AS1, CCL13, and IL-21R in AA pathogenesis. These 

biomarkers offer promising targets for future therapeutic strategies, potentially 

improving the management and treatment of AA. The integration of these biomarkers 

into clinical practice could significantly enhance diagnostic accuracy and therapeutic 

efficacy, thereby improving patient outcomes in AA. 

 

Future research should focus on validating these biomarkers in larger, independent 

cohorts to confirm their diagnostic and prognostic utility. Additionally, functional 

studies are needed to elucidate the precise mechanisms through which these biomarkers 

influence AA pathogenesis. Investigating the potential of these biomarkers in guiding 

personalized treatment approaches and their role in other autoimmune diseases could 

provide valuable insights. Finally, clinical trials assessing the efficacy of targeted 

therapies against these biomarkers will be crucial in translating our findings into clinical 

practice. 
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Figure Legends 

 

Figure 1. Volcano map and heat map of differentially expressed RNAs (DERs) of 

patchy-type AA (AAP) vs. normal controls (NC) (A), alopecia universalis (AU) vs. NC 

(B), and alopecia totalis (AT) vs.NC (C). Above map: volcano map. The blue and 

orange dots indicate significantly down-regulated and up-regulated DERs, respectively. 

The horizontal dashed line indicates FDR<0.05, and the vertical dashed line indicates 

|log2FC|>0.263; Bottom map: Two-way hierarchical clustering heat map based on the 

expression level of DERs. 
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Figure 2. Dot plot  of biology process (A) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways (B) significantly enriched by overlapping differentially 

expressed RNAs. The horizontal axis represents the number of genes, the vertical axis 

represents the item name, the color represents significance, and the color closer to red 

represents the greater significance. 
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Figure 3. Distribution map of immune cell types with significant differences between 

patchy-type AA (AAP), alopecia universalis (AU), and alopecia totalis (AT), and 

normal control (NC). * vs. NC, 0.01<p<0.05; ** vs. NC, 0.005<p<0.01; *** vs. NC, 

p<0.005.  
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Figure 4. Identification and assessment of immune-related modules using WGCNA. A: 

Adjacency matrix weight parameter power selection graph and schematic diagram of 

the average connection degree of genes under different power parameters. In the left 

graph, the horizontal axis represents the weight parameter power, and the vertical axis 

represents the square of the correlation coefficient between log(k) and log(p(k)) in the 

corresponding network. The red line represents the standard line where the square value 

of the correlation coefficient reaches 0.9. In the right graph, the red line represents the 

value of the average connectivity of the network nodes under the value of the power 

parameter of the adjacency matrix in the left figure. B: Module division tree diagram. 

Each color represents a different module. C: Module-trait correlation heat map. 
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Figure 5. The co-expression network of lncRNAs-mRNAs. Squares and circles 

represent lncRNAs and mRNAs, and the color of the node edge represents the color 

module corresponding to WGCNA. 

 

 

Figure 6. The validation of CXCL9 and CXCL10 as diagnostic markers in  AA patients. 

A. ROC analysis of CXCL9 in GSE68801. B. ROC analysis of CXCL10 in GSE68801. 

C.The expression levels of CXCL9 and CXCL10 in GSE80342. 
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Figure 7. Disease-related pathway network. Squares and circles represent lncRNAs and 

mRNAs, the color of the node represent the color module corresponding to WGCNA; 

the diamond represents the KEGG signal pathway. 
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Table Legends 

Table 1. Biology Process and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways significantly enriched by overlapping differentially expressed RNAs (DERs) 

Category Term Count PValue FDR 

Biology 

Process 
GO:0006954~inflammatory response 30 

1.47E-

10 

2.38E-

07 

 GO:0002250~adaptive immune response 19 
3.48E-

10 

2.82E-

07 

 GO:0042633~hair cycle 7 
1.80E-

07 

9.75E-

05 

 GO:0007267~cell-cell signaling 20 
3.44E-

07 

1.39E-

04 

 
GO:0070098~chemokine-mediated 

signaling pathway 
11 

7.85E-

07 

2.55E-

04 

 
GO:0071346~cellular response to 

interferon-gamma 
10 

1.05E-

06 

2.83E-

04 

 GO:0002548~monocyte chemotaxis 8 
1.17E-

05 

2.72E-

03 

 GO:0030593~neutrophil chemotaxis 9 
3.13E-

05 

6.35E-

03 

 GO:0006955~immune response 22 
4.86E-

05 

8.75E-

03 

 
GO:0070374~positive regulation of ERK1 

and ERK2 cascade 
13 

1.19E-

04 

1.92E-

02 

 
GO:0050776~regulation of immune 

response 
13 

1.39E-

04 

1.94E-

02 

 GO:0048247~lymphocyte chemotaxis 6 
1.55E-

04 

1.94E-

02 

 GO:0006968~cellular defense response 8 
1.55E-

04 

1.94E-

02 

 GO:0030574~collagen catabolic process 8 
1.90E-

04 

2.20E-

02 
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 GO:0007568~aging 12 
2.89E-

04 

3.12E-

02 

 
GO:0071347~cellular response to 

interleukin-1 
8 

3.64E-

04 

3.69E-

02 

 
GO:0016337~single organismal cell-cell 

adhesion 
9 

6.26E-

04 

4.60E-

02 

KEGG 

Pathway 
hsa04062:Chemokine signaling pathway 15 

1.49E-

05 

2.99E-

03 

 hsa04640:Hematopoietic cell lineage 10 
4.64E-

05 

4.66E-

03 

 
hsa04060:Cytokine-cytokine receptor 

interaction 
16 

7.53E-

05 

5.04E-

03 

 hsa05340:Primary immunodeficiency 6 
4.76E-

04 

2.39E-

02 

 hsa04660:T cell receptor signaling pathway 9 
7.30E-

04 

2.45E-

02 

 
hsa04620:Toll-like receptor signaling 

pathway 
8 

4.66E-

03 

1.34E-

02 

 hsa04974:Protein digestion and absorption 7 
7.43E-

03 

1.87E-

02 

 hsa05166:HTLV-I infection 12 
1.10E-

02 

2.46E-

02 

 

Table 2. The statistics information of modules 

ID Color 
Module 

size 
#DERs 

Enrichment information 

Enrichment 

fold[95%CI] 
Phyper 

module 1 black 209 10 0.614[0.288-1.164] 
1.43E-

01 

module 2 blue 950 1 0.0135[0.000346-0.0759] 
2.20E-

16 

module 

3 
brown 488 197 5.180[4.247-6.308] 

2.20E-

16 
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module 4 green 258 3 0.149[0.0305-0.444] 
1.55E-

05 

module 5 grey 1852 40 0.277[0.194-0.385] 
2.20E-

16 

module 6 pink 138 5 0.465[0.148-1.121] 
9.88E-

02 

module 

7 
red 257 118 5.891[4.593-7.527] 

2.20E-

16 

module 8 turquoise 964 43 0.573[0.405-0.791] 
3.96E-

04 

module 9 yellow 263 2 0.0976[0.0117-0.358] 
1.47E-

06 

 

Table 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways 

significantly related to genes in the co-expression network 

Term Count PValue 

*hsa04060:Cytokine-cytokine receptor interaction 11 4.00E-05 

*hsa04660:T cell receptor signaling pathway 7 2.15E-04 

hsa05340:Primary immunodeficiency 4 3.12E-03 

*hsa04062:Chemokine signaling pathway 7 5.37E-03 

*hsa04640:Hematopoietic cell lineage 5 6.79E-03 

hsa04380:Osteoclast differentiation 5 2.70E-02 

*hsa04514:Cell adhesion molecules (CAMs) 5 3.48E-02 

*hsa04630:Jak-STAT signaling pathway 5 3.72E-02 

*hsa04620:Toll-like receptor signaling pathway 4 4.65E-02 

*hsa04650:Natural killer cell mediated cytotoxicity 4 4.90E-02 

* Indicates that the overlapping pathways related to the disease  
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