Plasma Angiopoietin-like Protein 4 as a Novel Biomarker Predicting 10-year Mortality in a Community-based Population: A Longitudinal Cohort Study

Keywords

all-cause mortality, biomarker, cancer mortality, Angiopoietin-like protein 4 (ANGPTL4), cardiovascular or cancer-related mortality

Abstract

Introduction

Angiopoietin-like protein 4 (ANGPTL4) is a hepatokine implicated in fat metabolism regulation. Its genetic inactivation has been associated with improved glucose homeostasis, while elevated plasma ANGPTL4 levels are observed in diabetic and obese individuals. However, the potential link between ANGPTL4 and diabetes- or obesity-related complications remains uncertain. This study aimed to explore whether plasma ANGPTL4 levels could serve as predictors of cancer mortality, cardiovascular mortality, and all-cause mortality in a community-based cohort.

Material and methods

A community-based cohort study was conducted, where fasting plasma ANGPTL4 concentrations were measured at baseline, and vital status was ascertained through linkage with the National Health Insurance Research Database in Taiwan.

Results

During a 10.46-year follow-up period, 29 (2.49%) of the 1163 participants died. Subjects within the highest tertile of plasma ANGPTL4 levels exhibited the lowest survival rate. In unadjusted models, plasma ANGPTL4 significantly predicted all-cause mortality, cancer mortality, and cardiovascular or cancer-related mortality. Upon adjustment for confounders including age, sex, smoking, BMI, hypertension, DM, and renal function, each standard deviation increase in plasma ANGPTL4 was associated with HRs of 1.35 (95% CI 1.01-1.80, p<0.05) for all-cause mortality, 1.41 (95% CI 0.94-2.10, p=0.094) for cancer mortality, and 1.40 (95% CI 1.02-1.94, p<0.05) for cardiovascular or cancer-related mortality. Additionally, plasma ANGPTL4 contributed more significantly to predicting cardiovascular or cancer-related mortality and all-cause mortality compared to other predictors, such as sex, smoking, BMI, history of hypertension, history of diabetes, and eGFR.

Conclusions

Plasma ANGPTL4 emerges as a promising biomarker capable of predicting 10-year mortality and enhancing risk prediction beyond established risk factors.

1	Plasma Angiopoietin-like Protein 4 as a Novel Biomarker Predicting
2	10-year Mortality in a Community-based Population: A Longitudinal
3	Cohort Study
4	Introduction
5	The angiopoietin-like family comprises secreted proteins that share structural
6	similarities with angiopoietins. These proteins play crucial roles in various
7	physiological and pathophysiological processes, such as regulating angiogenesis and
8	inflammatory responses and modulating lipid, glucose, and energy metabolism (1-4).
9	Some of the angiopoietin-like (ANGPTL) proteins, including ANGPTL4, have been
10	detected in the systemic circulation (5), suggesting that these ANGPTL proteins may
11	act in an endocrine manner and may be good disease biomarkers. Among these
12	ANGPTL proteins, angiopoietin-like 4 (ANGPTL4) has emerged as a potential
13	therapeutic target and biomarker for cardiometabolic diseases. ANGPTL4 was
14	discovered in 2000 as a key regulator of lipid metabolism (6-8). It is primarily
15	synthesized by the liver and the adipose tissue (9). Its clearance from the
16	circulation predominantly occurs via renal excretion (7,9-11). Therefore,
17	impaired renal function may attenuate the clearance rate of ANGPTL4, resulting
18	in elevated plasma concentrations (12). Besides, hepatic dysfunction may also
19	affect systemic levels of ANGPTL4 by diminishing its synthesis (13,14).

20	Genetic inactivation of ANGPTL4 in mice improves glucose homeostasis and
21	lipid metabolism and results in smaller atherosclerotic lesions (15,16). In humans,
22	genetic variants of ANGPTL4 are associated with diabetes and coronary artery disease
23	(17), and plasma ANGPTL4 concentrations are higher in subjects with diabetes and
24	obesity (18). Further studies then showed that ANGPTL4 consists of three functional
25	domains: the signal peptide, the coiled-coil domain (N-terminal chain), and the
26	fibrinogen-like domain (C-terminal chain) (19). The N-terminal fragment of
27	ANGPTL4 interacts with lipoprotein lipase to regulate lipoprotein metabolism. On the
28	other hand, the C-terminal fragment of ANGPTL4 plays a role in energy expenditure
29	and various non-lipid-related processes, including vascular permeability,
30	angiogenesis, oxidative stress and inflammation(20). In human plasma, there is very
31	little full-length and N-terminal ANGPTL4 in their free forms. Most of the ANGPTL4
32	in human plasma is the C-terminal ANGPTL4 fragment. Several reports have
33	demonstrated the link between ANGPTL4 and cancer progression. Studies have
34	shown that ANGPTL4 is involved in mechanisms of cancer development and
35	progression, such as stem cell regulation, angiogenesis, vascular permeability, chronic
36	inflammation, and tumorigenesis(7). Besides, aberrant expression of ANGPTL4 in
37	tumors has been identified as a predictor of unfavorable prognosis and is linked to the
38	progression of several cancers, including oral cancer, lung cancer, breast cancer,

39	gastric cancer, and colorectal cancer(21-26).
40	Taken together, these findings suggest a role of plasma ANGPTL4 as a
41	biomarker for cancers and cardiovascular diseases. However, this remains unexplored
42	in the literature. Therefore, we used ELISA to measure the concentrations of plasma
43	ANGPTL4 C-terminal fragments and investigated whether plasma ANGPTL4 can
44	predict cancer mortality, cardiovascular mortality, and all-cause mortality in this
45	community-based cohort study.
46	
47	Material and Methods
48	Study Design and Participant Recruitment
49	Data for this investigation were sourced from the Taiwan Lifestyle Study, a large-
50	scale prospective cohort initiative launched in 2006(27-30). Residents aged 18 years
51	or older from Yunlin County, Taiwan, were invited to participate, with recruitment and
52	assessment conducted at the National Taiwan University Hospital Yun-Lin branch.
53	Clinical characteristics, demographic profiles, physical examination results, and blood
54	test outcomes were collected by physicians and study nurses during both initial and
55	follow-up visits. Participants were contacted annually after the initial visit and
56	biennially thereafter via telephone, email, or mail. Follow-up appointments were
57	arranged based on participant availability. Prior to enrollment, all participants

58	provided informed consent, and the study protocol received approval from the
59	Institutional Review Board of National Taiwan University Hospital (NTUH-REC No.:
60	202207009RINA).
61	All participants completed questionnaires, and their clinical and demographic
62	information was recorded. Trained nurses conducted anthropometric measurements,
63	including height, weight, waist circumference, and hip circumference, in the morning
64	following an overnight fast of at least 8 hours. Blood pressure was measured using a
65	mercury sphygmomanometer, with the arm supported at heart level after a 10-minute
66	rest. Three readings were taken at 1-minute intervals by skilled nurses, and the
67	average of the last two readings was utilized for analysis.
68	Each participant underwent questionnaire-based assessments, followed by
69	collection of clinical and demographic data. Trained nurses performed anthropometric
70	measurements, including height, weight, waist circumference, and hip circumference,
71	in the morning following an overnight fast of at least 8 hours. Blood pressure was
72	measured using a mercury sphygmomanometer, with the arm supported at heart level
73	after a 10-minute rest. Skilled nurses took three readings at 1-minute intervals, and the
74	mean of the last two readings was used for analysis.
75	A standard 75-gram oral glucose tolerance test (OGTT) was administered to
76	determine 2-hour postprandial plasma glucose (2hPG) levels. Fasting plasma glucose

77	(FPG), along with serum concentrations of total cholesterol, triglycerides (TGs), high-
78	density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and
79	high-sensitivity C-reactive protein, were quantified using an automated analyzer
80	(Toshiba TBA 120FR, Toshiba Medical Systems Co., Ltd. Tokyo, Japan). HbA1c
81	levels were measured using an automated analyzer (HLC-723 G7 HPLC systems,
82	Tosoh Corporation, Tokyo, Japan), with the assay certified by the National
83	Glycohemoglobin Standardization Program and standardized to the Diabetes Control
84	and Complications Trial reference assay.
85	
86	Measurement of plasma ANGPTL4
87	The plasma ANGPTL4 concentration was assessed once at enrollment with a
88	commercial enzyme-linked immunosorbent assay kit (R&D Systems, Human
89	Angiopoietin-like 4, Catalog Number: DY3485). This ELISA kit recognizes
90	recombinant human ANGPTL4 C-terminal fragment (amino acid 165-406). The intra-
91	and inter-assay coefficients of variation were 5.35% and 7.50%, respectively.
92	
93	Linkage to the National Health Insurance Research Database (NHIRD) in
94	Taiwan
95	The National Health Insurance Research Database (NHIRD) is collected from

96	the registered data and reimbursement claims of the National Health Insurance (NHI)
97	program in Taiwan, which was initiated in 1995 and utilized until now.
98	Approximately 99% of the population in Taiwan is enrolled in the NHI program, and
99	the NHIRD is maintained by the National Health Research Institutes. Information
100	identifiable personally to specific individual patients and healthcare providers is
101	encrypted to protect one's privacy and confidentiality. Cause of Death Data (CDD) is
102	one of the datasets in NHIRD, containing all the registered death records in
103	Taiwanese populations, which was used to define mortality in this study. We applied
104	to the Health and Welfare Data Science Center (HWDC) in the Ministry of Health and
105	Welfare for the linkage of the Taiwan Lifestyle Study database to the NHIRD and
106	successfully acquired the survival status of all the enrolled subjects in the Taiwan
107	Lifestyle Study until August 30, 2019. The institutional review board of National
108	Taiwan University Hospital reviewed and approved the study protocol.
109	
110	Statistical Analysis
111	For categorical outcomes, proportions within each category were calculated. The
112	normality of continuous variables was evaluated using the Shapiro-Wilk test.
113	Variables with a normal distribution were summarized as mean values with their

114 corresponding standard deviations (SDs), while those with skewed distributions were

115	transformed logarithmically and presented as median values with their interquartile
116	ranges. Differences in clinical features between the groups of patients who survived
117	and those who did not were analyzed using Student's t-tests and chi-square tests.
118	The correlation between levels of plasma ANGPTL4 and various clinical
119	indicators was analyzed using Pearson's correlation coefficients. Survival rates for
120	different groups were calculated using the Kaplan-Meier estimator, and the log-rank
121	test was used to compare these rates. Hazard ratios (HRs) for mortality due to all
122	causes, specifically cancer, and cardiovascular or cancer reasons were calculated
123	using Cox proportional hazards models that included variables of clinical importance.
124	The assumptions of proportional hazards were checked using plots of log-log
125	survival, comparisons of observed and expected outcomes, and goodness-of-fit tests,
126	which included both Schoenfeld and scaled Schoenfeld residuals. The model's ability
127	to predict mortality or survival over the follow-up period was assessed using
128	concordance statistics, which are comparable to the area under the receiver operating
129	characteristic (ROC) curve, with values ranging from 0.5 (indicating no predictive
130	power) to 1 (indicating perfect prediction).
131	Statistical analyses were conducted using Stata/SE 14.0 software for Windows
132	(StataCorp LP, College Station, TX), and a p-value below 0.05 was deemed to
133	indicate statistical significance.

136	Clinical characteristics of participants in this study
137	The study included 1163 participants, and the mean age was 60.6±11.75 years
138	old. During an average follow-up of 10.46 years (interquartile range, 2.24-13.54), 29
139	participants died, including 13 who died from cancers and 6 who died from
140	cardiovascular diseases. Since the number of subjects who died from cardiovascular
141	diseases was limited, cardiovascular mortality was not used as the sole outcome in
142	further statistical analysis. Instead, cardiovascular or cancer-related mortality was
143	used. Table I summarizes the clinical characteristics of subjects who survived or died
144	during follow-up. Participants who died during follow-up were older and had a
145	shorter follow-up period, lower estimated glomerular filtration rate (GFR), and higher
146	plasma high-sensitivity C reactive protein (hsCRP) level (all $p < 0.001$) than
147	participants who were still alive during follow-up. The percentage of male
148	participants was higher among participants who died during follow-up ($p = 0.001$).
149	The ANGPTL4 concentration was significantly higher in participants who died during
150	follow-up (672.48 \pm 268.47 ng/mL) than in participants who were still alive during
151	follow-up (499.60 \pm 202.01 ng/mL) (p <0.0001). There were no significant differences
152	in the percentage of smoking, body mass index (BMI), hypertension, diabetes, or

155	Correlation between plasma ANGPTL4 levels and clinical variables
156	The correlations between plasma ANGPTL4 levels and clinical variables are
157	presented in Table II. Plasma ANGPTL4 was positively associated with age ($r =$
158	0.2057; $p < 0.0001$), BMI ($r = 0.0943$; $p = 0.0013$), systolic blood pressure ($r =$
159	0.1110; $p = 0.0002$), diastolic blood pressure ($r = 0.1057$; $p = 0.0003$), OGTT 2-hour
160	plasma glucose ($r = 0.0672$; $p = 0.0122$), and log hsCRP ($r = 0.1235$; $p = <0.0001$)
161	and was negatively associated with estimated GFR ($r = -0.2149$; $p < 0.0001$).
162	
163	The relationship between plasma ANGPTL4 concentration at baseline and all-
164	cause mortality, cancer mortality and cardiovascular or cancer-related mortality
165	Figure 1 presents the Kaplan–Meier curve of all-cause mortality, cancer
166	mortality, and cardiovascular or cancer-related mortality by plasma ANGPTL4
167	tertiles. During follow-up, subjects with plasma ANGPTL4 concentrations in the
168	highest tertile had the highest all-cause mortality, cancer mortality, and cardiovascular
169	or cancer-related mortality (all $p < 0.05$).
170	In Table III, plasma ANGPTL4 was associated with all-cause mortality, cancer
171	mortality, and cardiovascular or cancer-related mortality in unadjusted models (HR

172	for each 1 SD increase in plasma ANGPTL4, 1.53 (95% CI, 1.26-1.87; $p < 0.001$) for
173	all-cause mortality, 1.55 (95% CI, 1.17-2.03; $p < 0.01$) for cancer mortality, and 1.53
174	(95% CI, 1.20-1.95; $p < 0.01$) for cardiovascular or cancer-related mortality). After
175	adjusting for age, sex, smoking, body mass index, hypertension, diabetes mellitus, and
176	eGFR, plasma ANGPTL4 was significantly associated with all-cause mortality and
177	cardiovascular or cancer-related mortality and was associated with cancer mortality
178	with borderline significance (adjusted HR for plasma ANGPTL4, 1.35 (95% CI, 1.01-
179	1.80; <i>p</i> < 0.05) for all-cause mortality, 1.41 (95% CI, 0.94-2.10; <i>p</i> =0.094) for cancer
180	mortality, and 1.40 (95% CI, 1.02-1.94; $p < 0.05$) for cardiovascular or cancer-related
181	mortality).
182	

The performance of plasma ANGPTL4 levels in predicting all-cause mortality, 183

cancer mortality, and cardiovascular or cancer-related mortality 184

- Table IV shows the contribution of each variable to predict all-cause mortality, 185
- cancer mortality, and cardiovascular or cancer-related mortality by comparing the 186
- differences in concordance statistics and AUC with and without the indicated variable. 187
- For all-cause mortality, the difference in concordance statistics and AUC for plasma 188
- ANGPTL4 were 0.0107 and 0.0106, respectively, which were lower than the 189
- 190 contribution of age but higher than the contribution of sex, smoking, BMI,

191	hypertension, DM, and eGFR. The differences in concordance statistics and AUC for
192	plasma ANGPTL4 to predict cancer mortality were 0.0008 and 0.0014, respectively,
193	whereas the differences in concordance statistics and AUC of plasma ANGPTL4 to
194	predict cardiovascular or cancer-related mortality were 0.012 and 0.0142,
195	respectively. Similarly, the contribution of plasma ANGPTL4 to predicting cancer
196	mortality and cardiovascular or cancer-related mortality was lower than the
197	contribution of age and was higher for the contribution of other variables.
198	
199	Discussion
200	To the best of our knowledge, this is the first longitudinal cohort study that
201	explores the relationship between plasma ANGPTL4 levels and all-cause mortality,
202	cancer mortality, and cardiovascular mortality, with an adequate sample size and
203	follow-up period. In this study, we found that plasma ANGPTL4 can independently
204	predict 10-year all-cause mortality and cardiovascular or cancer-related mortality in a
205	community-based population. The predictive ability of plasma ANGPTL4 was lower
206	than that of age but higher than the contribution of sex, smoking, BMI, history of
207	hypertension, history of diabetes, and eGFR.
208	Several studies identified the presence of ANGPTL4 in various solid tumors, such
209	as lung cancers, breast cancer, colorectal cancer, prostate cancer, hepatocarcinoma,

210	and renal cell carcinoma (21-26). Previous studies showed that the expression of
211	ANGPTL4 was significantly higher in lung adenocarcinoma (26) and breast cancer
212	tissues (23) and was closely associated with cancer progression and poor prognosis. In
213	addition, the expression of ANGPTL4 is positively correlated with the stage of
214	colorectal cancer (31). In patients with renal cell carcinoma, elevated serum
215	ANGPTL4 levels have been found to be a novel diagnostic and prognostic biomarker
216	(32). In summary, ANGPTL4 may have important roles in cancer growth,
217	progression, angiogenesis, and tumor metastasis, which supports the findings of the
218	present study indicating that plasma ANGPTL4 levels predict 10-year cancer
219	mortality.
220	Diabetes and atherosclerosis are both well-known risk factors for all-cause
221	mortality and cardiovascular-related mortality (33). Accumulating evidence has
222	shown that ANGPTL4 is associated with the risk of atherosclerosis and type 2
223	diabetes. One recent study demonstrated that genetic inactivation of ANGPTL4 is
224	associated with improved glucose homeostasis and a reduced risk of type 2 diabetes in
225	humans (10). Genetic deficiency of ANGPTL4 in mice also improves glucose
226	homeostasis and insulin sensitivity (10). Additionally, ANGPTL4-deficient mice have
227	better lipid metabolism and smaller atherosclerotic lesions than wild-type mice (16).
228	The amino acid-altering (missense) E40K variant in ANGPTL4 has been associated

229	with decreased levels of triglycerides and increased levels of high-density lipoprotein
230	(HDL) cholesterol (16). In humans, the DiscovEHR human genetics study included
231	42,930 participants and revealed that carriers of E40K and other inactivating
232	mutations in ANGPTL4 had lower levels of triglycerides and a lower risk of coronary
233	artery disease than did noncarriers (16). Physiologically, when ANGPTL4 is
234	secreted, it can bind to lipoprotein lipase (LPL) and inhibit its lipolytic activity
235	(3). This leads to reduced hydrolysis of triglycerides (TAGs) from TAG-enriched
236	lipoproteins (TRLs) like very low-density lipoprotein (VLDL) and chylomicrons
237	in adipose tissue, heart, and muscle (34). Beyond this, ANGPTL4 also exhibits
238	LPL-independent functions, including regulating energy homeostasis, vascular
239	permeability, angiogenesis, oxidative stress, and inflammation (3). Among these
240	functions, increased oxidative stress and inflammation are important
241	pathogenesis of atherosclerosis (35). ANGPTL4 can interact with integrins and
242	neuropilins to activate pathways involving FAK (focal adhesion kinase), SRC,
243	Rac1, Profilin-1, and RhoA (20). These activations further trigger the PI3K/AKT,
244	JAK/STAT3, ERK, and NF-кB signaling pathways, exacerbating inflammation
245	and tissue damage (20). ANGPTL4 can also interact with integrins to stimulate
246	NADPH oxidase-dependent production of superoxide (36). The dysregulation of
247	intracellular ROS levels, resulting in an excessive level or persistent elevation of

267	ANGPTL4 concentration could predict cardiovascular- and cancer-related mortality in
268	the present study support the concept that the C-terminal fragment is more closely
269	related to non-lipid-related processes stated above.
270	The present study has some strengths. First, this is the first longitudinal cohort
271	study to explore the relationship between plasma ANGPTL4 levels and all-cause
272	mortality, cancer mortality, and cardiovascular or cancer-related mortality. With this
273	design, the temporal relationship between elevated plasma ANGPTL4 and the
274	outcomes is clear. Second, the sample size of the study was large, and the follow-up
275	duration was long. Third, the follow-up rate in this study was 100% by linking to the
276	National Health Insurance Research Database (NHIRD). However, our study had
277	some limitations. First, plasma ANGPTL4 was measured only once at the beginning
278	of the observation period, which may limit the value of plasma ANGPTL4 over time
279	for the prediction of outcomes. Second, generalization of the findings to other
280	populations may be limited because all the subjects in the current study were Han
281	Chinese. Studies in other ethnic groups should be performed to determine whether the
282	findings can be generalized to other ethnic groups. Third, cancer is heterogeneous
283	and many factors may modify the risk of cancers, such as lifestyle, occupational
284	exposures, hormonal imbalances, and genetic predispositions etc (40). In our
285	analyses, we only included age, sex, smoking, body mass index, hypertension,

286	diabetes mellitus, and eGFR as confounders, but did not fully capture the other
287	influencing factors about lifestyle, occupational exposure, hormonal imbalances,
288	and genetic predispositions. Besides, our analyses categorize all cancers as a
289	single outcome, instead of treating them as specific cancer subtypes. Future
290	research with larger sample sizes and more recorded influencing factors is
291	necessary to provide clearer insights into the specific roles of ANGPTL4 in these
292	particular cancers.
293	
294	Conclusions
295	In the present study, we demonstrated that plasma ANGPTL4 could predict 10-
296	year all-cause mortality and cardiovascular or cancer-related mortality in a
297	community-based population. In addition, plasma ANGPTL4 can improve mortality
298	prediction over and above established risk factors. These findings suggest that plasma
299	ANGPTL4 may be a novel biomarker to predict mortality. However, it's important
300	to note that this conclusion is based on a single study with ANGPTL4 that was
301	measured only once at the beginning of the observation period. Further research
302	in diverse populations is warranted to validate these findings and assess the
303	generalizability of the result.

305 **References**

306	1.	Hato T, Tabata M, Oike Y. The role of angiopoietin-like proteins in angiogenesis
307		and metabolism. Trends in cardiovascular medicine 2008 ;18(1):6-14.
308	2.	Santulli G. Angiopoietin-like proteins: a comprehensive look. Frontiers in
309		endocrinology 2014 ;5:4.
310	3.	Aryal B, Price NL, Suarez Y, Fernández-Hernando C. ANGPTL4 in metabolic and
311		cardiovascular disease. Trends in molecular medicine 2019 ;25(8):723-34.
312	4.	Ge H, Cha J-Y, Gopal H, Harp C, Yu X, Repa JJ, et al. Differential regulation and
313		properties of angiopoietin-like proteins 3 and 4. Journal of lipid research
314		2005 ;46(7):1484-90.
315	5.	Oike Y, Akao M, Kubota Y, Suda T. Angiopoietin-like proteins: potential new
316		targets for metabolic syndrome therapy. Trends in molecular medicine
317		2005 ;11(10):473-9.
318	6.	Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, et al.
319		Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome
320		proliferator-activated receptor target gene. Journal of Biological Chemistry
321		2000 ;275(37):28488-93.
322	7.	Fernández-Hernando C, Suárez Y. ANGPTL4, A MULTIFUNCTIONAL PROTEIN
323		INVOLVED IN METABOLISM AND VASCULAR HOMEOSTASIS. Current opinion in

324 hematology **2020**;27(3):206.

325	8.	Kenichi Y. Proof of evidence: PPAR-induced ANGPTL4 in lipid and glucose
326		metabolism. Biotechnology and Molecular Biology Reviews 2007;2(4):105-7.
327	9.	Kersten S. Role and mechanism of the action of angiopoietin-like protein
328		ANGPTL4 in plasma lipid metabolism. Journal of lipid research 2021 ;62.
329	10.	Gusarova V, O'Dushlaine C, Teslovich TM, Benotti PN, Mirshahi T, Gottesman O,
330		et al. Genetic inactivation of ANGPTL4 improves glucose homeostasis and is
331		associated with reduced risk of diabetes. Nature communications 2018 ;9(1):1-
332		11.
333	11.	Bano G, Imam MT, Bajpai R, Alem G, Kashyap VK, Habib A, et al. Expression of
334		angiopoetin-like protein-4 and kidney injury molecule-1 as preliminary
335		diagnostic markers for diabetes-related kidney disease: A single center-based
336		cross-sectional study. Journal of Personalized Medicine 2023 ;13(4):577.
337	12.	Al Shawaf E, Abu-Farha M, Devarajan S, Alsairafi Z, Al-Khairi I, Cherian P, et al.
338		ANGPTL4: a predictive marker for diabetic nephropathy. Journal of diabetes
339		research 2019 ;2019.
340	13.	Altun Ö, Dikker O, Arman Y, Ugurlukisi B, Kutlu O, Cil EO <i>, et al.</i> Serum
341		Angiopoietin-like peptide 4 levels in patients with hepatic steatosis. Cytokine
342		2018 ;111:496-9.

- 343 14. Ke Y, Liu S, Zhang Z, Hu J. Circulating angiopoietin-like proteins in metabolic-
- 344 associated fatty liver disease: a systematic review and meta-analysis. Lipids in
- 345 Health and Disease **2021**;20(1):55.
- 346 15. Janssen AW, Katiraei S, Bartosinska B, Eberhard D, Willems van Dijk K, Kersten
- 347 S. Loss of angiopoietin-like 4 (ANGPTL4) in mice with diet-induced obesity
- 348 uncouples visceral obesity from glucose intolerance partly via the gut
- 349 microbiota. Diabetologia **2018**;61:1447-58.
- 350 16. Dewey FE, Gusarova V, O'Dushlaine C, Gottesman O, Trejos J, Hunt C, et al.
- 351 Inactivating variants in ANGPTL4 and risk of coronary artery disease. New
- 352 England Journal of Medicine **2016**;374(12):1123-33.
- 353 17. Chen Z, Schunkert H. Genetics of coronary artery disease in the post-GWAS era.
- 354 Journal of Internal Medicine **2021**;290(5):980-92.
- 355 18. Barja-Fernandez S, Moreno-Navarrete JM, Folgueira C, Xifra G, Sabater M,
- 356 Castelao C, et al. Plasma ANGPTL-4 is Associated with Obesity and Glucose
- 357 Tolerance: Cross-Sectional and Longitudinal Findings. Molecular nutrition &
- 358 food research **2018**;62(10):1800060.
- 359 19. Zhu P, Goh YY, Chin HFA, Kersten S, Tan NS. Angiopoietin-like 4: a decade of
- 360 research. Bioscience reports **2012**;32(3):211-9.
- 361 20. Zuo Y, He Z, Chen Y, Dai L. Dual role of ANGPTL4 in inflammation. Inflammation

362 Research **2023**:1-11.

363 21. Kubo H, Kitajima Y, Kai K, Nakamura J, Miyake S, Yanagihara K, *et al.* Regulation
364 and clinical significance of the hypoxia-induced expression of ANGPTL4 in

- 365 gastric cancer. Oncology letters **2016**;11(2):1026-34.
- 366 22. Zhang H, Wong C, Wei H, Gilkes D, Korangath P, Chaturvedi P, et al. HIF-1-
- 367 dependent expression of angiopoietin-like 4 and L1CAM mediates vascular
- 368 metastasis of hypoxic breast cancer cells to the lungs. Oncogene
- **2012**;31(14):1757-70.
- 23. Zhao J, Liu J, Wu N, Zhang H, Zhang S, Li L, et al. ANGPTL4 overexpression is
- associated with progression and poor prognosis in breast cancer. Oncology
 letters **2020**;20(3):2499-505.
- 373 24. Kolb R, Kluz P, Tan ZW, Borcherding N, Bormann N, Vishwakarma A, et al.
- 374 Obesity-associated inflammation promotes angiogenesis and breast cancer via
- angiopoietin-like 4. Oncogene **2019**;38(13):2351-63.
- 376 25. Nakayama T, Hirakawa H, Shibata K, Nazneen A, Abe K, Nagayasu T, et al.
- 377 Expression of angiopoietin-like 4 (ANGPTL4) in human colorectal cancer:
- 378 ANGPTL4 promotes venous invasion and distant metastasis. Oncology reports
- **2011**;25(4):929-35.
- 380 26. Yang Y, Liu Y, Gao P, Liu K, Zhao K, Ying R, et al. Prognostic Significance of

- 381 ANGPTL4 in Lung Adenocarcinoma: A Meta-Analysis Based on Integrated TCGA
- 382 and GEO Databases. Evidence-Based Complementary and Alternative Medicine
- **2022**;2022.
- 384 27. Ma W-Y, Yang C-Y, Shih S-R, Hsieh H-J, Hung CS, Chiu F-C, *et al.* Measurement of
 385 waist circumference: midabdominal or iliac crest? Diabetes care
 386 **2013**;36(6):1660-6.
- 387 28. Hung CS, Lee Pc, Li HY, Ma WY, Lin MS, Wei JN, et al. Haemoglobin A1c is
- associated with carotid intima–media thickness in a Chinese population.
 Clinical endocrinology **2011**;75(6):780-5.
- 29. Yu T-Y, Wei J-N, Kuo C-H, Liou J-M, Lin M-S, Shih S-R, *et al.* The impact of gastric

atrophy on the incidence of diabetes. Scientific reports **2017**;7(1):1-8.

- 392 30. Fan K-C, Wu H-T, Wei J-N, Chuang L-M, Hsu C-Y, Yen I, et al. Serum angiopoietin-
- 393 like protein 6, risk of type 2 diabetes, and response to hyperglycemia: a
- 394 prospective cohort study. The Journal of Clinical Endocrinology & Metabolism
- **2020**;105(5):e1949-e57.
- 396 31. Zhang Y, Yang X, Liu S, Zhuang Z, Wei M, Deng X, et al. Comprehensive Analysis
- 397 of Potential Prognostic Values of ANGPTLs in Colorectal Cancer. Genes
 398 2022;13(12):2215.
- 399 32. Dong D, Jia L, Zhou Y, Ren L, Li J, Zhang J. Serum level of ANGPTL4 as a potential

400		biomarker in renal cell carcinoma. 2017. Elsevier. p 279-85.
401	33.	Barr EL, Zimmet PZ, Welborn TA, Jolley D, Magliano DJ, Dunstan DW, et al. Risk
402		of cardiovascular and all-cause mortality in individuals with diabetes mellitus,
403		impaired fasting glucose, and impaired glucose tolerance: the Australian
404		Diabetes, Obesity, and Lifestyle Study (AusDiab). Circulation 2007;116(2):151-
405		7.
406	34.	Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein
407		metabolism and atherogenesis. Journal of lipid research 1996 ;37(4):693-707.
408	35.	Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD.
409		Targeting early atherosclerosis: a focus on oxidative stress and inflammation.
410		Oxidative medicine and cellular longevity 2019 ;2019.
411	36.	Dai L, Xie Y, Zhang W, Zhong X, Wang M, Jiang H, et al. Weighted gene co-
412		expression network analysis identifies ANGPTL4 as a key regulator in diabetic
413		cardiomyopathy via FAK/SIRT3/ROS pathway in cardiomyocyte. Frontiers in
414		Endocrinology 2021 ;12:705154.
415	37.	Zhu P, Tan MJ, Huang R-L, Tan CK, Chong HC, Pal M, et al. Angiopoietin-like 4
416		protein elevates the prosurvival intracellular O2-: H2O2 ratio and confers
417		anoikis resistance to tumors. Cancer cell 2011 ;19(3):401-15.
418	38.	Chen YQ, Pottanat TG, Siegel RW, Ehsani M, Qian Y-W, Zhen EY, et al.

419		Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4
420		during postprandial partitioning of fatty acids [S]. Journal of Lipid Research
421		2020 ;61(8):1203-20.
422	39.	Mandard S, Zandbergen F, Tan NS, Escher P, Patsouris D, Koenig W, et al. The
423		direct peroxisome proliferator-activated receptor target fasting-induced
424		adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated
425		protein that is increased by fenofibrate treatment. Journal of Biological
426		Chemistry 2004 ;279(33):34411-20.
427	40.	Roy D, Dorak MT. Environmental factors, genes, and the development of human
428		cancers. Springer; 2010.
429		
430		
431		
432		
433		
434		
435		
436		
431 432 433 434 435 436		

- 438 Legends of Figure
- 439 Figure 1. Kaplan–Meier survival curve for (A) all-cause mortality, (B) cancer
- 440 mortality, and (C) cardiovascular or cancer-related mortality in subjects with
- 441 **different tertiles of plasma ANGPTL4 concentrations.** Solid line, the lowest tertile
- 442 of plasma ANGPTL4 concentration; long dashed line, the middle tertile of plasma
- 443 ANGPTL4 concentration; dashed line, the highest tertile of plasma ANGPTL4
- 444 concentration. For all-cause mortality, *p* value=0.0334 by log rank test; for cancer
- 445 mortality, p value=0.0206; for cardiovascular or cancer-related mortality, p
- 446 value=0.0309.

*p<0.05, †p=0.094 Age, sex, smoking, body mass index, hypertension, diabetes mellitus, and eGFR were treated as confounders and were adjusted.

1 Table I. Baseline clinical characteristics in subjects who survived or died during

2 follow-up.

	Alive during	Died during	р
	follow-up	follow-up	
N (%)	1134 (97.51)	29 (2.49)	
Age, year	$\textbf{60.24} \pm \textbf{11.55}$	$\textbf{75.59} \pm \textbf{11.10}$	<0.0001
Follow-up years	$\textbf{10.54} \pm \textbf{1.85}$	7.51 ± 2.82	<0.0001
Male gender (N, %)	414 (36.51)	19 (65.52)	0.001
Smoking (N, %)	136 (11.99)	6 (20.69)	0.158
BMI (kg/m ²)	24.02 ± 3.29	24.14 ± 3.24	0.8349
SBP (mmHg)	122 ± 16	123 ± 18	0.7103
DBP (mmHg)	78 ± 10	77 ± 9	0.46
Hypertension (N, %)	282 (24.87)	7 (24.14)	0.926
Fasting plasma glucose	93 ± 17	93 ± 15	0.9080
(mg/dL)			
OGTT 2 hr glucose	122 ± 51	130 ± 44	0.3709
(mg/dL)			
HbA1c (%)	5.7 ± 0.7	5.8 ± 0.5	0.6382
Diabetes mellitus (N, %)	82 (7.23)	3 (10.34)	0.525

ANGPTL4 (ng/mL)	499.60 ± 202.01	672.48 ± 268.47	<0.0001
hsCRP	0.085 (0.05-0.17)	0.1 (0.05-0.24)	0.0003
(mL/min/1.73m2)			
Estimated GFR	71.51 ± 14.39	62.33 ± 8.95	0.0007
HDL-C (mg/dL)	51 ± 13	56 ± 15	0.0536
LDL-C (mg/dL)	117 ± 32	110 ± 38	0.2814
Total cholesterol (mg/dL)	194 ± 37	187 ± 37	0.3183
Triglyceride (mg/dL)	95 (66-138)	76 (57-109)	0.1089

3 Means \pm SDs or medians (interquartile ranges) are shown.

4 Plasma triglyceride and hsCRP were logarithmically transformed for statistical

5 analyses.

6 BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure;

7 HbA1c, glycated hemoglobin; GFR, glomerular filtration rate; HDL-C, high-density

8 lipoprotein cholesterol; HsCRP, high-sensitivity c-reactive protein; OGTT, oral

9 glucose tolerance test; LDL-C, low-density lipoprotein cholesterol.

10

11

12

	r	р
Age	0.2057	<0.0001
BMI	0.0943	0.0013
Fasting plasma glucose	0.0332	0.2585
OGTT 2 hr glucose	0.0672	0.0122
HbA1c	0.0239	0.4148
SBP	0.1110	0.0002
DBP	0.1057	0.0003
Log TG	-0.0282	0.3365
ТС	-0.0070	0.8117
LDL-C	0.0121	0.6794
HDL-C	0.0339	0.2483
Log hsCRP	0.1235	<0.0001
Estimated GFR	-0.2149	<0.0001

14 Table II. The relationship between plasma ANGPTL4 concentration and clinical

15 characteristics.

16 BMI, body mass index; OGTT, oral glucose tolerance test; HbA1c, glycated

17 hemoglobin; SBP, systolic blood pressure; DBP, diastolic blood pressure; TG;

18 triglyceride; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-

19	C, high-density lipoprotein cholesterol; hsCRP, high-sensitivity c-reactive protein;
20	GFR, glomerular filtration rate.
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	

Table III. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) of every

- **39** 1 standard deviation (SD) increase in plasma ANGPTL4 concentration to predict
- 40 all-cause mortality, cancer mortality and cardiovascular or cancer-related

	Unadjusted	Adjusted models
All-cause mortality	1.53* (1.26-1.87)	1.35‡ (1.01-1.80)
Cancer mortality	1.55† (1.17-2.03)	1.41§ (0.94-2.10)
Cardiovascular or cancer-	1.53† (1.20-1.95)	1.40‡ (1.02-1.94)
related mortality		

41 mortality in unadjusted and adjusted models.

- 42 1 SD of plasma ANGPTL4 = 205.5612 ng/mL.
- 43 In the adjusted models, age, sex, smoking, body mass index, hypertension, diabetes

44 mellitus, and eGFR were treated as confounders and were adjusted.

- **45** * *p* < 0.001
- 46 † p < 0.01
- 47 $\ddagger p < 0.05$
- 48 § p = 0.094
- 49

50

- 52 Table IV. The concordance statistics and area under the ROC curve (AUC) in the
- 53 full model and without the indicated variable in the full models to predict all-
- 54 cause mortality, cancer mortality and cardiovascular or cancer-related mortality.
- 55 Differences in concordance statistics and AUC between the full model and the
- 56 model without the indicated variable are shown in parentheses.
- 57

Models	All-cause mortality		Cancer mortality		Cardiovascular or cancer-related mortality	
	C-statistics	AUC	C-statistics	AUC	C-statistics	AUC
Full model	0.8149	0.8376	0.8652	0.8752	0.8074	0.8202

Variable deleted from the full model

Plasma ANGPTL4	0.8042	0.8270	0.8644	0.8738	0.7954	0.8060
	(0.0107)	(0.0106)	(0.0008)	(0.0014)	(0.012)	(0.0142)
Age	0.7189	0.7570	0.7906	0.8088	0.7545	0.7735
	(0.096)	(0.0797)	(0.0746)	(0.0664)	(0.0529)	(0.0467)
Gender	0.8077	0.8304	0.8645	0.8743	0.8068	0.8201
	(0.0072)	(0.0072)	(0.0007)	(0.0009)	(0.0006)	(0.0001)
Smoking	0.8095	0.8342	0.8680	0.8776	0.8027	0.8168
	(0.0054)	(0.0034)	(-0.0028)	(-0.0024)	(0.0047)	(0.0034)

BMI	0.8160	0.8388	0.8671	0.8761	0.8068	0.8196
	(-0.0011)	(-0.0012)	(-0.0019)	(-0.0009)	(0.0006)	(0.0006)
Hypertension	0.8121	0.8328	0.8681	0.8786	0.8075	0.8202
	(0.0028)	(0.0048)	(-0.0029)	(-0.0034)	(-0.0001)	(0)
DM	0.8156	0.8383	0.8644	0.8744	0.8074	0.8203
	(-0.0007)	(-0.0007)	(0.0008)	(0.0008)	(0)	(-0.0001)
Estimated GFR	0.8185	0.8429	0.8643	0.8746	0.8054	0.8175
	(-0.0036)	(-0.0053)	(0.0009)	(0.0006)	(0.002)	(0.0027)
8	•	•				

59	
60	
61	
62	
63	
64	
65	
66	
67	
68	

