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A b s t r a c t

Hepatocellular  carcinoma  (HCC) is the most common primary malignancy 
of the liver and is associated with a  high mortality rate. Its occult origin 
often results in the loss of the optimal timeframe for liver transplantation 
and resection. During the past few decades, tremendous advances in the 
treatment of HCC have been achieved, and immunotherapy has become an 
attractive approach with promising results in clinical trials. In the present 
work, we review immune checkpoint inhibitors (ICIs) for their function and 
role in treating cancers, particularly advanced HCC, summarize recent ther-
apeutic progress with various ICIs or their combinations with other options/
therapeutic agents, and discuss works related to the development of bio-
markers that predict therapeutic response as well as the limitations of ICIs. 
Future directions for immune checkpoint (ICP) therapy are also addressed. 

Key words: immune checkpoint inhibitor, immunotherapy, cancer, 
prognostic biomarker, therapeutic response, surgical resection.

Introduction

Liver cancer ranks as the sixth most common malignant tumor and is 
the fourth leading cause of cancer-related death [1, 2]. The overall 5-year 
survival rate of patients with advanced hepatocellular carcinoma (HCC) 
is approximately 18%, and its incidence has been increasing in recent 
years. For example, the incidence rate was approximately 18.3 per/million 
people, with a mortality rate of approximately 17.1/100,000 in China [3]. 
The causes of HCC include hepatitis B and hepatitis C infection, genetic 
factors and other internal and external factors such as alcohol, tobac-
co, obesity, and diabetes [4, 5] (Figure 1). Recently, long noncoding RNA 
has been implicated in HCC as an oncogenic factor [6]. Orthotopic liver 
transplantation (OLT) is considered the best therapeutic option for end-
stage liver disease, including HCC. However, due to the insidious onset, 
most patients with HCC are already at the late stage once diagnosed, 
and less than 20% of them are able to receive OLT or other surgical treat-
ment, while the remaining patients can only be treated palliatively [7, 
8]. Before 2007, transcatheter arterial chemoembolization (TACE) was the 
first choice for treating patients with unresectable HCC [9]. Although TACE 
is currently one of the major HCC treatment options, no global guide-
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lines have been established regarding the dosage, 
choice, or combination of cytotoxic drugs used for 
TACE [9]. Furthermore, the response rate to TACE 
remains relatively low (approximately 30%) [10]. 
In 2007, a  multi-target tyrosine kinase inhibitor 
(TKI), sorafenib, was shown to increase the over-
all survival (OS) of patients participating in the 
Sorafenib HCC Assessment Randomized Protocol 
and Asia-Pacific trials. Since then, this drug has 
become the standard treatment for advanced 
HCC [11–13]. Lenvatinib, also a  TKI that displays 
promising therapeutic effects against various solid 
tumors, was found to be comparable to sorafenib 
with regard to OS in advanced HCC [14] and had 
more favorable outcomes for advanced HCC when 
used with Vp3/4 [15]. In addition, regorafenib and 
cabozantinib (both TKIs) and ramucirumab (a vas-
cular endothelial growth factor (VEGF) receptor in-
hibitor) have been approved by the US Food and 
Drug Administration (FDA) as second-line systemic 
therapeutics for patients who are not responsive 
to sorafenib [16, 17]. However, for the majority 
of patients, monotherapy has limited clinical out-
comes. The survival rate after single TKI treatment 
was only 3 months in patients with unresectable 
HCC [14, 18], and acquired resistance to TKI may 
develop due to EGFR mutations, leading to treat-
ment failure [19].

Recently, the mechanisms underlying tumor 
cell immune escape have been intensively studied, 
leading to the development of various immuno-
therapy drugs that can suppress the development 
and progression of malignant tumor [20–22]. The 
programmed cell death 1 (PD-1) receptor and its 
ligands PD-L1 and PD-L2, and cytotoxic T-lympho-
cyte-associated antigen 4 (CTLA-4) are known to 
play crucial roles in tumor cell immune escape 
mechanisms [23]. Immune checkpoint inhibitors 
(ICI), such as antibodies against PD1, PD-L1, and 
CTLA-4, can activate T cells and block immunosup-
pression in the tumor microenvironment [24, 25]. 
The blockade of CTLA-4 and PD-1/PD-L1 signaling 
with antibodies against PD-1/PD-L1 and CTLA-4, 
such as nivolumab, avelumab, and ipilimumab, 
significantly prolonged recurrence-free survival, 
OS, and distant metastasis-free survival as com-
pared to placebo in a stage III trial of melanoma 

therapy [26–28], although the incidence rate of 
adverse events was still high, particularly in pa-
tients with endocrinopathies [29, 30]. Neverthe-
less, ICP has brought new hope to patients with 
advanced HCC [31]. Since ICP is a very important 
approach for cancer treatment, it has attracted 
numerous researchers. As a  result, a  number of 
reviews have been published [32, 33]. To further 
enhance our understanding of current research in 
this area, we searched the literature published in 
PubMed and Medline between 2005 and 2023 us-
ing hepatocellular carcinoma, immunotherapy, im-
mune checkpoint inhibitor, biomarker, therapeutic 
response as top search terms. In this review, we 
add new information regarding immune resis-
tance, image-based biomarker and locoregional 
treatments as well as the current understanding 
of the mechanisms of tumor cell immune escape, 
and the role and effect of ICIs in treating cancers, 
particularly advanced HCC. We also summarize re-
cent therapeutic progress with various ICIs alone 
or jointly with other methods, describe emerging 
biomarkers that help predict therapeutic response 
following ICP, and address future directions for ICP. 

Immune escape mechanisms and 
immunotherapy in HCC

The liver contains blood from the portal veins 
and hepatic arteries and has both autoanti-
gens and endogenous antigens. When the blood 
containing the two types of antigens circulates 
through the liver, it develops autoimmune toler-
ance that prevents liver cells from being injured 
as a result of autoimmunity [34, 35]. Owing to this 
immune tolerance, liver tumor cells can avoid be-
ing recognized and cleared by the immune system. 
When tumor cells grow, they release antigens that 
are recognized by T lymphocytes through anti-
gen-presenting cells (APC), resulting in the specific 
killing of tumor cells. Immune checkpoints are in-
hibitory or stimulatory protein molecules synthe-
sized on the cytoplasmic membrane of different 
immune cells, such as natural killer cells, dendritic 
cells, macrophages, monocytes, B and T cells, and 
tumor cells, or other cell types that regulate im-
mune system activation and maintain immune 
homeostasis [36]. Immune checkpoint PD-1 is 
present mainly in lymphocytes. The levels of PD-
L1 are also abundantly expressed in innate cells 
such as macrophages (specifically Kupffer cells). In 
the normal physiological state, PD-1 binds to PD-
L1/PD-L2 to release inhibitory signals to inhibit 
the proliferation and activation of T lymphocytes 
via various pathways, resulting in the inhibition 
of autoimmune reactions, which confers immune 
resistance to tissues and cells (Figure 2). When 
the levels of PD-1 and PD-L1/PD-L2 are elevated, 
T lymphocytes are activated, resulting in reduced 

Figure 1. Major causes of hepatocellular carcinoma
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proliferation and increased escape of tumor cells 
from immunity [37]. A study using mouse models 
revealed that inhibition of PD-1 enhances the T 
lymphocyte-mediated immune response [38]. PD-
L1/PD-L2 synthesized in human autoimmune cells 
also plays an important role in tumor cell immune 
escape [39]. The immune checkpoint CTLA-4 is 
produced by regulatory T lymphocytes. It releases 
signals that inhibit T cell proliferation, leading to 
the immune escape of tumor cells [40]. Therefore, 
blocking these mechanisms with ICIs can result in 
the early recognition and killing of tumor cells.

Anti-tumor mechanism of ICI

The anti-tumor immune response can be reac-
tivated by ICIs by suppressing inhibitory receptor 

signaling in T-cells [41]. This process also involves 
various other immune cells. First, APCs (such as 
dendritic cells) are motivated to recognize tu-
mor-related antigenic peptides displayed on ma-
jor histocompatibility complex (MHC) I/II, and 
then these antigens are processed and presented 
to T cells to produce CD8+ T cells that can recog-
nize tumor cells. The tumor-specific CD8+ T cells 
are then differentiated into effector T cells, which 
are cloned and proliferated in the tumor microen-
vironment, and finally eliminate the tumor cells by 
releasing cytolytic effectors, such as granzyme A/B 
and perforin [42]. Finally, with the assistance of 
CD4+ helper T cells and dendritic cells, some ef-
fector T cells differentiate into effector memory  
T cells for a  rapid response to antigen re-attack. 

Figure 2. Immune resistance mechanisms of hepatocellular carcinoma via CD8+ cell activation

CTLA-4 – cytotoxic T-lymphocyte antigen-4, Tregs – regulatory T cell, HSC – hematopoietic stem cell – HC – hepatocellular 
carcinoma, KC – Kupffer cells, LSEC – liver sinusoidal endothelial cell, PDL-1 – programmed cell death ligand 1,  
PDL-2 – programmed cell death ligand 2, PD – programmed cell death protein.

Figure 3. Modes of action of immune checkpoint inhibitors in hepatocellular carcinoma

APC – antigen-presenting cells, MHC – major histocompatibility complex, T cell – T  lymphocytes, TCR – T-cell receptor,  
CTLA-4 – cytotoxic T-lymphocyte-associated antigen 4, PD – programmed cell death protein, PDL-1 – programmed cell death 
ligand.
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This is also the reason why some patients receiv-
ing immunotherapy achieve long-term remission.

To avoid injuring non-cancer cells due to an ex-
cessive immune response, immunoregulatory pro-
teins such as PD-1 on the T cell surface transmit 
immunologically suppressive signals to suppress 
the proliferation of T cells after binding to its li-
gand PD-L1. If cancer cells master this mechanism, 
they can generate PD-L1 on their own surface to 
avoid being recognized by T cells, thus escaping 
from the siege of T cells. PD-1/PD-L1 and CTLA-4  
inhibitors are antibodies designed to block the 
recognition process of PD-1/PD-L1 and CTLA-4 on 
T cells (Figure 3). This blockade partially restores 
the capacity of T cells to kill tumor cells [43].

PD-1/PD-L1 inhibitors

HCC often occurs on the background of in-
flamed livers, where PD-1 levels are high in lym-
phocytes, and PD-L1 and PD-L2 are highly ex-
pressed in Kupffer cells, liver sinusoidal endothelial 
cells (LSECs) that form the wall of the hepatic si-
nusoids, and white blood cells as a  result of ex-
posure to proinflammatory cytokines [44]. PD-1 
inhibitors, such as pembrolizumab, nivolumab, and 
cemiplimab, suppress the binding of PD-1 to PD-L1 
and PD-L2, leading to enhanced recognition and 
clearance of cancer cells by the immune system. 
These monoclonal antibodies (mAbs) have been 
demonstrated to be effective for treating mela-
noma, gastric cancers, non-small cell lung cancer, 
bladder cancer, and head and neck squamous cell 
carcinoma (HNSCC) [45]. Pembrolizumab (a mono-
clonal antibody against PD-1) was approved by 
the FDA in 2019 to treat patients with recurrent or 
metastatic HNSCC [46]. Since then, several clinical 
trials for ICIs have been completed, and the out-
comes are encouraging. For instance, nivolumab 
(a monoclonal antibody against PD-1) and pertu-
zumab (a humanized antibody against extracellu-
lar domain II of human epidermal growth factor 
receptor 2 (HER2)) are common PD-1 inhibitors for 
breast and lung cancers [47, 48]. In phase I/II of the 
CheckMate 040 trial, nivolumab was administered 
to 262 patients with later-stage unresectable HCC. 
The results showed that the  objective  response 
rate (ORR) in the dose escalation and expansion 
groups was 20%, and the median progression-free 
survival (PFS) was 4.0 (2.9–5.4) months. For pa-
tients who did not receive sorafenib, the median 
PFS was 28.6 months, and for those who received 
sorafenib, the median PFS was 15.0 (5.0–28.1) 
months. In the dose-escalation group, the medi-
an OS was 15.6 (13.2–18.9) months. In these two 
groups, 18% and 23% of patients with and with-
out sorafenib had grade 3–4 treatment-related 
adverse reactions, including fatigue and diarrhea, 
without new signs of cancer progression, indicat-

ing that nivolumab has a manageable safety pro-
file in patients with later-stage HCC [49]. 

In a  study on pembrolizumab for the treat-
ment of advanced HCC, 104 patients were includ-
ed. These patients were diagnosed as intolerant 
to sorafenib and were treated with 200 mg of 
pembrolizumab every 3 weeks for approximately  
2 years. After treatment, the median PFS was  
4.9 months, the median OS was 12.9 months, and 
the ORR was 17%. One (1%) patient had complete 
remission and 17 (16%) had partial responses. In 
46 (44%) patients, the disease stabilized, and in 34 
(33%) patients, the disease continued to progress. 
The disease  control rate (DCR) was 62% in 16% 
of patients with grade 3 treatment-related adverse 
reactions, including fatigue and high levels of as-
partate and alanine aminotransferases [49], indi-
cating that pembrolizumab is clinically effective 
and well tolerated in patients with advanced HCC 
who had previously been treated with sorafenib.

CTLA-4 mAb

CTLA-4 is an antigen expressed by T cells that 
is involved in the differentiation of white blood 
cells. CTLA-4 competes with CD28 to bind to APC 
surface ligands CD80/CD86 to activate inhibitory 
signals that limit the activation and proliferation 
of T cells [50]. CTLA-4 mAbs block the binding of 
CTLA-4 to its ligand to stimulate the activation and 
proliferation of T-cells. As a result of the blockade, 
the induction and anti-tumor immune responses 
were enhanced. The mAb CTLA-4 was one of the 
earliest ICIs clinically used for cancer treatment. In 
2011, the FDA approved the first humanized mAb, 
ipilimumab, targeting advanced melanoma [51]. 
Another CTLA-4 mAb, tremelimumab, was tested 
for advanced melanoma, liver cancer, and colorec-
tal cancer and was granted by the FDA as an or-
phan drug for the treatment of HCC. In a Phase II  
clinical trial (NCT01008358), 17 progressive cas-
es were treated after sorafenib treatment and 
hepatitis C virus-related HCC. The ORR and stable 
disease rate were 17.6% and 76.4%, respective-
ly. The median time for disease progression was  
6.48 months, and the incidence rate of adverse 
reactions (grade 3/4) was 45% [52].

A dramatic reduction in viral load was achieved, 
and the predominant variants present before 
therapy were replaced by new variants of the hy-
pervariable region 1 of HCV. This antiviral activity 
is likely related to an enhanced specific anti-HCV 
immune response [14]. A randomized, multicenter 
phase III study investigated the therapeutic out-
comes such as OS of nivolumab plus ipilimumab 
vs. standard of care  (SOC) (sorafenib or lenvati-
nib) in participants with advanced HCC who had 
not received prior systemic therapy. The results 
showed that the dual immunotherapy combina-



Recent advances in immune checkpoint inhibitor-based therapy of advanced hepatocellular carcinoma 

Arch Med Sci 5

tion provided durable responses and a long-term 
survival benefit [53]. However, this type of immu-
notherapy has not yet been approved for use as 
a  monotherapy in HCC. Tremelimumab appears 
to have excellent therapeutic potential; howev-
er, further exploration is needed to develop and 
use biomarkers to predict the immune response 
to this drug. Potential combination therapy strat-
egies should be explored to overcome the high in-
cidence rate of adverse reactions and improve the 
current low response rate (10–20%).

Combination immune therapy 

Data from preclinical studies [54, 55] indicate 
that PD-1/PD-L1 mAbs have synergistic anti-tu-
mor activity with CTLA-4 mAb. The synergistic 
therapeutic activity of navulizumab and epizumab 
was demonstrated in a Phase III clinical trial of ad-
vanced melanoma [56]. The combination of duval-
izumab and trimetazumab is currently being used 
to treat advanced HCC in Phase I/II clinical trials 
(NCT02519348) [57]. Based on preliminary results 
from 40 patients, the ORR was 15%, with a stable 
disease rate of 57.5%. A report released at the 2019 
annual meeting of the American Society of Clini-
cal Oncology (ASCO) [58] indicated that combined 
treatment with navulizumab and ipiximab had an 
ORR of 31%, with a 5% complete response rate in 
148 patients with advanced HCC, demonstrating 
the superiority of dual immunotherapy. Based on 
this result, navulizumab + ibizumab combination 
therapy was expeditiously approved by the FDA as 
the first combination treatment in second-line ther-
apy for HCC. 

Tumor growth can accelerate angiogenesis, 
leading to vascular leakage, hypoxia, and the 
stimulation of multiple immunosuppressive path-
ways in the tumor microenvironment. Vascular 
endothelial growth factor (VEGF) promotes angio-
genesis in tumors and is an important promoting 
factor in angiogenesis, which can be inhibited by 
anti-angiogenic inhibitors [59]. Preclinical stud-
ies have indicated that combination therapy can 
promote the maturation of APCs and the activa-
tion and infiltration of CD8+ cytotoxic T lympho-
cytes (CTL), reducing myeloid-derived inhibitory 
cells in tumor tissue and infiltration of regulatory  
T cells, synergistically promoting the clearance of 
tumors [60]. Bevacizumab is a  humanized anti- 
VEGF antibody. In the NCT02715531 trial, ate-
zumab monotherapy and dual therapy with bev-
acizumab were compared for efficacy and safety 
in patients with advanced HCC [61]. Combination 
therapy significantly improved OS and response 
rates. The latest Phase III Clinical Trials IMbrave150 
(NCT03434379) [62] used atezumab in combina-
tion with bevacizumab to treat 501 metastatic 
or unresectable patients with advanced HCC and 

found that the risk of patient death was reduced 
by 42%, and the 12-month survival rate was im-
proved to 67.2% compared to sorafenib.

This type of combination therapy plan breaks 
the bottleneck of unresectable HCC and has been 
approved by the FDA as a first-line immunother-
apy option for patients who do not receive sys-
temic treatment and have unresectable HCC. In 
a  Phase Ib clinical trial (NCT04072679), a  total 
of 50 patients with advanced HCC were includ-
ed to receive low-dose and high-dose PD-1 mAb 
xindilizumab and the bevacizumab analog IBI305 
[63]. The results showed that after high-dose 
treatment, the ORR and stable disease rate were 
as high as 33.3% and 83.3%, respectively, further 
validating the efficacy and safety of the combina-
tion therapy.

ICIs plus TKIs

TKIs (such as sorafenib and lenvatinib) have 
multiple drug targets and can inhibit multiple ty-
rosine kinase-mediated signaling pathways and 
tumor cell proliferation, and block neovascular-
ization. These drugs also have immune regulatory 
effects, such as reducing myeloid-derived inhibi-
tory cells and regulatory T cells, enhancing tumor 
infiltration, and activating NK and T cells.

In the 2019 ASCO annual meeting, the clinical 
outcome of atezumab and acetinib combination 
for the treatment of advanced HCC was released, 
with an ORR of 13.6% and a median PFS time of 
5.5 months. However, dual therapy had higher tox-
icity than monotherapy, resulting in a 3/4 grade 
treatment-related adverse reaction rate of 72.7% 
[64], suggesting that although the combination 
treatment plan has a  significant therapeutic ad-
vantage, more studies are needed to optimize the 
dosage and cycle. In addition, in other clinical tri-
als [65], atezumab  combined with cabozantinib 
therapy (NCT03755791) and pabolizumab com-
bined with lenvatinib (NCT03713593) were evalu-
ated for efficacy and safety. Based on the REFLECT 
test results, lenvatinib is recommended as a cat-
egory 1 drug for first-line treatment in the NCCN 
guidelines [14], and in the CSCO guidelines for liv-
er cancer treatment, pabolizumab, and calilizum-
ab in combination with apatinib/oxaliplatin are 
recommended for use in systemic chemotherapy.

ICI plus other therapies 

Tumor cells release tumor antigens once they 
are killed by chemotherapy, radiation therapy, 
or interventional therapy. For example, oxalipla-
tin-based chemotherapy FOLFOX4 and GEMOX 
regimens can induce immunogenic cell death [66]. 
When combined with ICIs, these therapies can fur-
ther maintain or enhance the activation of T cells 
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by APCs, leading to increased tumor-specific im-
mune responses. A  comparative phase II clinical 
trial was conducted to evaluate the therapeutic 
efficacy of the carrelizumab/FOLFOX4 combina-
tion and sorafenib as first-line therapy for ad-
vanced HCC [67]. Based on the results from 34 pa-
tients, ORR and stable disease rates were 26.5% 
and 79.8%, respectively, the median tumor-free 
survival time was up to 5.5 months, and the inci-
dence of ≥ 3 grade ICP-related adverse reactions 
was only 5.9%, indicating that the combination 
has excellent therapeutic effect and safety. In the 
CSCO guide 2, patients who had used sorafenib in 
the past were considered eligible for the ruilizum-
ab and FOLFOX4 regimen as second-line treat-
ment. In a  retrospective clinical cohort analysis,  
5 patients with advanced HCC received stereotac-
tic radiotherapy combined with navolizumab. Two 
patients had complete remission and three had 
partial remission, with a median PFS time of up to 
14.9 months, achieving local control and survival 
within 1 year [68]. 

In another study, selective internal radiother-
apy was reported to enhance the activation and 
recruitment of immune cells, especially PD-1-ex-
pressing immune cells, in patients with HCC [69]. 
Radiotherapy was conducted during nivolumab 
treatment in 76 patients, and PFS and OS were 
found to be significantly higher in patients receiv-
ing radiotherapy-nivolumab combination therapy 
than in those receiving nivolumab alone [70]. With 
stereotactic body radiotherapy, no classic radia-
tion-induced liver disease (RILD), also known as 
radiation hepatitis, a serious side effect of radio-
therapy for HCC, was observed [68]. These studies 
suggest therapeutic synergy between radiothera-
py and ICI therapy. However, large-scale prospec-
tive clinical studies are required to validate these 
conclusions.

TACE, pulsed radiofrequency ablation (RFA), or 
cooled RFA has also been attempted in combina-
tion with trametazumab to treat advanced HCC. 
The median disease progression time was 7.4 
months and the median OS time was 12.3 months, 
demonstrating the feasibility of this combination 
therapy. However, further studies are required to 
confirm the efficacy and safety of this treatment. 
A clinical trial (NCT03397654) is currently under-
way to evaluate the effectiveness and safety of 
pembrolizumab combined with TACE to treat late-
stage HCC [71]. It is generally agreed that ICP com-
bined with locoregional therapy, defined as imag-
ing-guided liver tumor-directed procedures [72], 
is an important direction for precise personalized 
treatment of HCC as described above. The locore-
gional therapies have gained consideration atten-
tion in HCC treatments, including RFA, microwave 
and high-intensity focused ultrasound ablation 

[73], selective internal radiation therapy [74], and 
stereotactic body radiotherapy [75]. These percu-
taneous ablation, transarterial chemoemboliza-
tion, and transarterial radioembolization locore-
gional therapies are being explored to increase 
OS while preserving liver function, with promising 
outcomes [76].

The timing of ICP

ICIs and related combination therapies have 
been demonstrated to be effective neoadjuvant 
therapies for HCC, which can improve clinical 
outcomes and benefit patients in various as-
pects and stages. Refining the timing of the ICP 
is important to maximize these benefits. A  ran-
domized, open-label, perioperative phase II study 
(NCT0322076) compared 27 patients with resect-
able HCC who received navulizumab in combi-
nation or without combination with ipilimumab 
administered during the perioperative period. 
The results showed that ICP before surgery re-
sulted in complete pathological remission in 5 
(24%) patients and partial pathological remission 
in 3 (16%) patients, suggesting that ICP may be 
applied to patients with early stage HCC as neo-
adjuvant or adjuvant therapies [77]. Studies have 
also shown that after therapeutically reducing un-
resectable HCC to resectable HCC through chemo-
therapy, the 5-year survival rate after the second 
resection reached 25% to 57%, with reduced tu-
mor recurrence and improved prognosis, which is 
significantly higher than that without surgery (6% 
to 8%) [78]. Therefore, ICP provides a new path-
way for transforming advanced HCC into resect-
able HCC for subsequent surgical resection. At the 
2020 ASCO annual meeting, the combined use of 
TKIs (apatinib or lenvatinib) and PD-1 mAb was 
reported to treat 60 patients with advanced and 
unresectable HCC [79]. Among them, 11 (18.3%) 
cases were converted into resectable HCC, sug-
gesting that ICIs are not only effective in signifi-
cantly prolonging the survival period and improv-
ing the quality of life of patients with advanced 
HCC, but also valuable in early neoadjuvant ther-
apy and the transformation of advanced HCC to 
resectable HCC.

Real-world studies of ICP

Randomized controlled trials (RCTs) provide 
a standardized approach for evaluating the safety 
and efficacy of new drugs. However, the inclusion 
and exclusion criteria used in RCTs are often too 
restrictive to accommodate diverse patient popu-
lations, and the outcomes from RCTs may not ful-
ly conform to real-world clinical environments and 
conditions. Real-world studies are thus able to 
provide reliable data regarding patients’ respons-
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es to drugs in real diagnosis and treatment envi-
ronments, which may be a better alternative and 
supplementary source of safety and efficacy data 
for new drug development. For ICIs, several re-
al-world studies have been performed to analyze 
the therapeutic response in large cohorts (Table I)  
[80–84]. For instance, in a  real-world retrospec-
tive study, 55 patients with advanced HCC were 
administered PD-1 inhibitors (36 navuzumab,  
13 pemuzumab and 6 AK105), with a median OS 
of 15 months, PFS of 10 months, PR of 22%, and 
ORR of 22%. Forty-seven (67%) patients showed 
stable disease, and 6 (11%) had progressive dis-
ease (PD) at the first radiological evaluation. The 
DCR was 89%, total incidence of adverse reac-
tions was 61.8%, and incidence of major adverse 
reactions was 89%. Most adverse reactions were 
alleviated after treatment. This study demonstrat-
ed that PD-1 inhibitors are safe and effective for 
advanced primary HCC [80]. An international mul-
ticenter real-world cohort study with 65 patients 
with advanced HCC (34 treated with trastuzumab 
and 31 treated with pemuzumab) was conducted. 
The results showed that both inhibitors have en-
couraging efficacy and safety [81].

Biomarker development for ICP response 
prediction 

Current data indicate that the ORR after treat-
ment with ICIs is about 20% in advanced HCC, 
meaning that a  considerable proportion of pa-
tients receiving ICP are neither responsive nor re-
spond poorly. Therefore, it is particularly important 
to select appropriate patients for ICI treatment to 
achieve a  better ORR. An important approach is 
to use cellular and molecular cues to predict and 
stratify patients who respond to ICPs and benefit 
from these therapies. Although a number of prog-
nostic biomarkers for ICIs have been identified and 
tested in various cancers, there are few studies on 
biomarkers predicting the response of patients 
with HCC to ICIs or ICPs, because ICP therapy is 
still in its infancy in HCC [85]. Zheng et al. treat-
ed eight cases of liver cancer with PD-1 inhibitors 

and analyzed the characteristics of the dynamics 
and composition of the gut microbiome during an-
ti-PD-1 immunotherapy in HCC using metagenom-
ic sequencing data from the fecal samples of three 
responders and five non-responders. They found 
that the fecal samples from responders showed 
higher taxa richness and gene counts than those 
of non-responders. The responders were found 
to have more microbial species, including Akker-
mansia muciniphila and Ruminococcaceae. Their 
work demonstrated that the dynamics of intesti-
nal bacterial flora may be an early indicator of the 
outcomes of immunotherapy in HCC, and can be 
used for disease monitoring and decision-making 
in treatment planning [86]. Juneja et al. found that 
PD-L1 expression levels in immune cells might be 
a  potential biomarker of suppressed antitumor 
immunity and might play a critical role in immu-
nosuppression [87]. Radiological methods have 
also been applied to measure the response to 
immunotherapy in advanced HCC. For example, 
magnetic resonance elastography (MRE) has been 
used to assess the therapeutic effect of ICP in ad-
vanced HCC. The results showed that early stiff-
ness changes in MRE tumors were associated with 
therapeutic response in advanced HCC [88]. With 
advancements in research, an increasing number 
of biomarkers have been proposed. Male sex [89], 
old age (over the age of 60) [90] and low baseline 
transforming growth factor-β (TGF-β) [91] have 
been shown to be more responsive to immuno-
therapy, and tumor-infiltrating CD8(+) T cells and 
intratumoral CD4/CD8 T-cell ratio are also prom-
ising biomarkers of therapeutic response [92, 93]. 
Recently, exhausted, unconventionally activated 
CD8+ PD1+ T  cells have been found to progres-
sively accumulate in non-alcoholic steatohepatitis 
(NASH); however, they do not lead to NASH-in-
duced HCC regression after PD1-targeted immu-
notherapy. Patients with NASH-driven HCC have 
shorter OS than patients with other etiologies 
after anti-PD1 or anti-PDL1 antibody treatment, 
suggesting that etiology could also be an import-
ant determinant of ICI therapy [94]. Magnetic res-

Table I. Outcomes of real-world studies of immune checkpoint inhibitors in hepatocellular carcinoma

Drugs Trial 
name

stage N OS [m] PFS [m] ORR (%) DCR (%)

Anti-PD-1 antibody [80]  55 15 10 22 89

Nivolumab/pembrolizumab [81]   34/31 11.0   4.6 12/49  

Nivolumab [82]   155  10.25 3.06  23.9  

PD‐(L)1 inhibitors [85] 5257 9.3 3.2

Nivolumab/pembrolizumab [83] 1344 8.0

Atezolizumab [84] 152 12.8 

Ab – antibody, CTLA-4 – cytotoxic T lymphocyte antigen-4, ORR – objective response rate, OS – overall survival, PD-1 – programmed 
death-1, PD-L1 – programmed death-ligand 1, PFS – progression-free survival, ORR – objective remission rate, DCR – disease control rate, 
irAER – incidence of grade 3 immune-related adverse events.
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onance (MR) imaging-based techniques including 
chemical shift imaging, frequency-selective imag-
ing, and MR spectroscopy can be used to quantify 
fat-water admixtures [95], and intratumor steato-
sis was associated with treatment outcomes of ICI 
in patients with late-stage HCC [96], suggesting 
that non-invasive MR techniques may be used to 
predict the therapeutic outcome of ICI. 

Cancer progression may occur at an acceler-
ated and unexpectedly high rate during ICP. This 
is one of the key reasons for the dramatic reduc-
tion in survival time. This condition is referred to 
as hyperprogressive disease (HPD) and has been 
observed in the treatment of various tumors, in-
cluding HCC [97, 98]. Several studies have been 
conducted to identify the clinical or molecular fac-
tors that predict HPD (Table II) [99–120], although 

many of these biomarkers need independent val-
idation in HCC.

Resistance mechanism of TKI

Acquired resistance to TKI remains a challenge 
in ICP and targeted therapy [121]. Several mech-
anisms are related to TKI resistance. The first rec-
ognized acquired resistance was the T790M mu-
tation in EGFR. This missense mutation affects the 
formation of hydrogen bonds between tyrosine 
kinases and TKI, disabling TKI from binding tyro-
sine kinases [122, 123], and is highly frequent in 
NSCLC patients resistant to gefitinib or erlotinib 
[124]. Several irreversible EGFR inhibitors, such as 
afatinib and osimertinib, have been developed to 
overcome acquired resistance due to T790M mu-

Table II. Potential biomarkers predicting therapeutic response in hyperprogressive disease (HPD) in cancers after 
therapy with immune checkpoint inhibitors

Biomarkers Prognostic significance 

Circulating tumor DNA 
(ctDNA) [99]

High concentration of cfDNA is associated with high risk for HPD and poor progression-
free survival in NSCLC

Chemoattractant 
protein 1 [100] 

Low serum monocyte chemoattractant protein is associated with HPD

Hemoglobin [101] Serum hemoglobin level is associated with HPD

Neutrophil-lymphocyte 
ratio (NLR) [102] 

High NLR is associated with poor overall survival, and NLR increases rapidly in patients 
developing HPD

MDM2 [103, 104] Amplification of MDM2 leads to poor prognosis

EGFR [105] Overexpression of EGFR lowers the response rates to ICI therapy 

BRCA2 [106] Enriched mutations in the DNA repair gene BRCA2 improves anti-PD-1 response in cancer 

MMR [107, 108] Deficiency of MMR predicts better prognosis in cancer

Regulatory T (Treg) 
cells [109]

Activation of Treg promotes hyperprogression of cancer

T cells [110] Increased TPEX cell frequencies are linked to increased patient survival

myeloid-derived 
suppressor cells 
(MDSCs) [111]

Patients with low MDSC count are more likely to respond to ipilimumab treatment

IFN-γ [112] IFN-γ mediates inhibition of lung cancer via upregulating expression of PD-L1, leading to 
better prognosis

CRP [113] High CRP predicts HPD in gastric cancer

Tumor infiltrating 
lymphocytes (TILs) 
[114]

High TIL predicts good ICI treatment outcomes

Immune cells within  
the tumor 
microenvironment 
[115]

Number and type of immune cells affect the treatment response 

Gene expression 
profiling [116, 117]

Helps to identify novel biomarkers for ICI responses and effectiveness in cancer

Immune milieu [118] Can be modulated by bacteriophage and genetically-engineered microbes to increase and 
predict response to ICI

Neoantigen [119] Neoantigen load is a promising biomarker for predicting the efficacy of ICIs

Tumor-specific 
antigens [120]

Associated with patient response to immunotherapies, including ICI, adoptive cell transfer, 
and dendritic cell-based vaccines and may be used to development of effective second-

generation therapeutic cancer vaccines
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tations [125, 126]. Amplification of the c-MET gene 
is an important mechanism of resistance. c-MET 
can activate the RTK system to induce cell prolif-
eration, differentiation, migration, and angiogen-
esis [127], and amplification of the c-MET gene is 
partially responsible for TKI resistance in NSCLC 
patients [128]. Understanding this mechanism al-
lows the exploration of combined TKI treatments 
to overcome EGFR-TKI resistance [129, 130]. For 
example, the single-arm antibody MetMAb was 
developed to block the binding of HGF to the MET 
receptor, resulting in the restoration of sensitivity 
to erlotinib in NSCLC patients [131]. Deficiency of 
PTEN, a tumor suppressor, is also found in TKI-re-
sistant cells and in patients treated with gefitinib 
[132]. High expression levels of JNK were found in 
non-responders among sorafenib-treated HCC pa-
tients. As JNK activity is associated with the level 
of CD133 [133], this may increase the subpopula-
tion of multipotent cells that have higher prolifer-
ative and self-renewal abilities than those identi-
fied as cancer stem cells and proven to trigger the 
onset and growth of HCC [134]. In addition, the 
Jun proto-oncogene (c-Jun) in the mitogen-activat-
ed protein kinase (MAPK) signaling pathway is up-
regulated in hepatoma cell lines after treatment 
with sorafenib, leading to reduced sorafenib-in-
duced apoptosis, demonstrating that c-Jun is a key 
player in the development of sorafenib resistance 
in hepatoma cells [135]. In human hepatoma cells, 
the expression of some genes in the Toll-like re-
ceptor (TLR) signaling pathway was altered after 
treatment with regorafenib and lenvatinib. There-
fore, it may be possible to improve the treatment 
of patients with HCC via modulation of the TLR 
signaling pathway [136]. Other possible resistance 
mechanisms include mutations in BRAF, which is 
located downstream of the EGFR signaling path-
way and promotes cell proliferation and differen-
tiation through interaction with RAS [137, 138], 
mTOR pathway suppression [139] and increased 
VEGF levels [140].

Conclusions and perspectives

ICP therapy, represented by ICIs, has made sig-
nificant breakthroughs in the treatment of HCC. 
ICIs improve OS and increase DCR to a certain ex-
tent in patients with advanced HCC who are intol-
erant or unresponsive to sorafenib. ICIs have few-
er adverse events and are not metabolized in the 
liver, thus avoiding severe adverse reactions and 
liver injury. Combination treatments with two or 
more ICIs, radiotherapy, and interventional thera-
py may further improve anticancer efficiency. The 
development of more effective and safe immune 
combination therapy is a future direction for treat-
ing advanced HCC. There are still urgent problems 
to be solved when applying ICI for HCC treatment, 

such as organ-specific immunity and highly im-
munosuppressive microcirculations. ICI-based 
ICP heavily relies on driving endogenous immune 
cells, such as existing CTLs, but the response to ICI 
could be reduced due to the elimination of immune 
cells through various inhibitory pathways and im-
mune escape in HCC. Therefore, more research is 
needed to explore specific biomarkers to measure 
patient response to ICI/ICP, develop new drugs on 
known targets and combination treatment, and 
gain a  better understanding of the mechanisms 
underlying ICP-related adverse reactions. Identifi-
cation of new immune checkpoints, development 
of new ICP based on new immune checkpoints, 
and overcoming the obstacles associated with the 
tumor microenvironment will provide more treat-
ment options for patients with HCC in the future. 
In addition, real-world studies with large sample 
sizes are needed to further validate the therapeu-
tic outcomes of ICIs/ICPs for advanced HCC. 
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