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 Abstract
Introduction
This study aims to investigate the relationship between exposure to per- and polyfluoroalkyl
substances (PFAS) and the risk of diabetes by analyzing a large dataset from the National Health and
Nutrition Examination Survey (NHANES).

Material and methods
This study analyzed  data from the US NHANES database from 2003 to 2018. Generalized linear
regression models were used to examine the relationship between serum chemical concentrations and
diabetes. Weighted quantiles and regression were employed to assess the association between mixed
chemical exposure and diabetes. The 'mixture effect' between chemicals and diabetes was estimated
using a Quantile g-Computation model.

Results
The study involved 11,780 participants, with 1,451 individuals having diabetes and 10,329 being non-
diabetic. Logistic regression analysis was to investigate the relationship between five PFAS chemicals
and the  diabetes risk, while controlling for all covariates. The results indicated that none PFAS
chemicals exhibited a statistically significant association with an increased risk of diabetes. However,
when exploring the positive and negative constraint models of the Weighted Quantile Sum (WQS), the
coefficient of the chemical mixing index displayed a strong correlation with diabetes in model III, even
after adjusting for covariates. Additionally, an evaluation of the 'mixture effect' using Quantile g-
computation revealed that among the five chemicals, the combined exposure effect of
Perfluorononanoate (PFNA) on diabetes was positive, whereas exposure to the other four chemicals
had a negative impact.

Conclusions
The study findings suggest a possible connection between PFAS and an increased risk of diabetes,
particularly highlighting PFNA's positive correlation with the combined exposure effect on diabetes.

Prep
rin

t



1 
 

The association between mixed exposure to per- and polyfluoroalkyl substances (PFAS) and the risk 

of diabetes 

Abstract 

Introduction:This study aims to investigate the relationship between exposure to per- and polyfluoroalkyl 

substances (PFAS) and the risk of diabetes by analyzing a large dataset from the National Health and 

Nutrition Examination Survey (NHANES). 

Material and methods: This study analyzed participants with complete data from the US NHANES 

database spanning from 2003 to 2018. Generalized linear regression models were used to examine the 

relationship between serum chemical concentrations and diabetes. Weighted quantiles and regression were 

employed to assess the association between mixed chemical exposure and diabetes. The 'mixture 

effect' between chemicals and diabetes was estimated using a Quantile g-Computation model. 

Results: The study involved a total of 11,780 participants, with 1,451 individuals having diabetes and 

10,329 being non-diabetic. Logistic regression analysis was utilized to investigate the 

relationship between five PFAS chemicals and the risk of diabetes, while controlling for all covariates. 

The results indicated that none of the PFAS chemicals exhibited a statistically significant association with 

an increased risk of diabetes. However, when exploring the positive and negative constraint models of the 

Weighted Quantile Sum (WQS), the coefficient of the chemical mixing index displayed a strong correlation 

with diabetes in model III, even after adjusting for covariates. Additionally, an evaluation of the 'mixture 

effect' using Quantile g-computation revealed that among the five chemicals, the combined exposure effect 

of Perfluorononanoate (PFNA) on diabetes was positive, whereas exposure to the other four chemicals had 

a negative impact. 
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Conclusions: The study findings suggest a possible connection between PFAS and an increased risk of 

diabetes, particularly highlighting PFNA's positive correlation with the combined exposure effect on 

diabetes. 

Keywords PFAS; Mixed exposure; Diabetes; Weighted quantiles sum (WQS)
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Introduction 

Diabetes, a chronic disease, affects around 537 million adults globally and is expected to exceed 600 million 

by 2030, with type 2 diabetes accounting for about 90% of cases [1]. Diabetes mellitus (DM) comprises a group 

of chronic metabolic disorders characterized by high blood glucose levels, leading to various complications over 

time. Untreated DM can cause damage to blood vessels, nerves, tissues, and organs[2]. Epidemiological studies 

have highlighted the significant roles of genetics and lifestyle in the development of type 2 DM[3-5]. Factors such 

as physical inactivity, poor diet, smoking, and high BMI contribute to the rising prevalence of diabetes. 

Additionally, emerging research suggests that environmental pollutants, such as perfluoroalkyl and 

polyfluoroalkyl substances, along with other endocrine-disrupting compounds, may impact the progression of 

diabetes [6]. 

PFASs are extensively utilized in a wide range of commercial applications, including surfactants, 

lubricants, and flame retardant foams,[7] due to their exceptional stability and hydrophobic and oleophobic 

properties. Some PFASs are also employed as polymers in various industrial and consumer 

products, like waterproof coatings on textiles and non-stick coatings on kitchenwar However, PFASs 

are recognized as Persistent Organic Pollutants (POPs) because of their prolonged environmental presence 

and resistance to degradation [9-11]. They have been found in water sources, soil, plants, animals, and 

humans. Human exposure to PFASs can occur through different pathways, with the main one being contact with 

contaminated drinking water or food[11,12]. Several studies have indicated a potential link between PFAS 

chemicals, such as perfluorooctanoic acid (PFOA), PFOS, and others, and various adverse health effects, 

including preeclampsia, altered aminotransferase levels, elevated blood lipids, reduced antibody responses to 

vaccines, and low birth weight. However, the causality of these associations remains to be established [13].Gui et 

al. conducted a systematic review and meta-analysis of epidemiological evidence, revealing that PFAS exposure 
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is associated with an increased risk of type 2 diabetes mellitus. They specifically noted a parabolic dose-response 

relationship with PFOA exposure[14]. While the association between polychlorinated biphenyls (PCBs) and type 

2 diabetes risk has been extensively studied over the years, the levels of PCBs in the environment and human body 

are gradually decreasing. As a result, there have been limited investigations into the relationship between PFASs 

and diabetes. Therefore, analyzing the relationship between mixed exposure to PFASs and diabetes is 

of significant importance. 

Our study utilized data from the NHANES spanning from 2003 to 2018. To examine the association between 

five PFAS concentrations and diabetes, we employed a weighted multivariate logistic regression model. Prior to 

analysis, both ln transformation and quartile transformation were applied. Additionally, we utilized the WQS 

regression model to assess the relationship between mixed PFAS exposure and diabetes, allowing us to identify 

the specific PFAS that were more influential in the context of diabetes. To estimate the 'mixture effect' relationship 

between PFAS exposure and diabetes, we employed the Quantile g-Computation model. Our investigation aimed 

to contribute new epidemiological evidence to the field by exploring the relationship between mixed PFAS 

exposure and the risk of diabetes. 

Materials and Methods 

Study Population 

The NHANES is a cross-sectional study conducted in the United States since the 1960s to assess the health 

and nutritional status of individuals, including children and adults. Approval was obtained from the Ethical Review 

Board of the National Center for Health Statistics, and informed consent was secured from all participants. Data 

from publicly available sources, spanning from 2003 to 2018, were collected for this study. A total of 80,312 

participants were initially included, with 63,771 excluded due to missing PFAS level information. Of the 
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remaining 16,541 participants with PFAS measurements, 4,761 were further excluded for missing covariates. 

Fortunately, no outcome variables were missing. Ultimately, 11,780 participants were included in the final analysis, 

all of whom had complete information on both PFAS measurements and covariates. Further details on participant 

identification can be found in Figure 1. 

Definition of Diabetes 

Diabetes diagnoses were made by medical professionals, and information on diabetes status was collected 

through a questionnaire. Participants aged 20 years or older were asked if they had ever been diagnosed 

with diabetes by a doctor or healthcare professional. Positive responses to this question were used to identify 

individuals with diabetes in the survey. 

Pollutant measurement 

PFASs have become extensively utilized and have been found in various environmental sources, including 

water and organisms [15-17]. Humans can come into contact with PFASs through inhalation, skin exposure, 

and consuming contaminated food. Once in the body, PFASs initially circulate in the bloodstream and undergo 

metabolic changes, leading to the production of metabolites that can accumulate in specific organs 

and trigger toxic responses, such as endocrine disruption[18,19]. In this research, blood samples from participants 

were analyzed for five specific PFASs: Perfluorodecanoate (PFDeA), Perfluorohexane sulfonate (PFHxS), 2-(N-

methyl-perfluorooctane) sulfonamido acetate (Me-PFOSA-AcOH), Perfluorononanoate (PFNA), and 

Perfluoroundecanoate (PFUA). These PFASs were identified as persisting in the environment from 2002 to 2018 

using high-performance liquid chromatography coupled with tandem mass spectrometry (MS/MS). When the limit 

of detection (LOD) for a chemical was below 50%, the LOD logarithm/2 method was used to calculate the 

corresponding data, as 86% of the chemicals met this criterion.To ensure quality, procedural blanks and spiked 
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samples were included in each batch of samples to monitor potential contamination and analytical performance. 

Detection limits were set for each PFAS analyte, and measurements below these limits were processed using the 

NHANES LOD/2 method, a standard practice for handling non-detectable values in environmental exposure 

assessment. 

Covariates 

A comprehensive review of the relevant literature was conducted to identify potential covariates associated 

with exposure to Perfluoroalkyl and PFAS and the risk of diabetes. The selected covariates were categorized 

as either continuous or categorical variables. Continuous variables included age, family poverty index ratio (PIR), 

annual household income, and BMI. Categorical variables encompassed gender (male, female), race (Mexican 

American, other Hispanic, non-Hispanic white, non-Hispanic black, other race - including multiracial), education 

(less than ninth grade, grades 9-11 (including grade 12 without a diploma), high school /GED or equivalent, college 

or AA degree, associate's degree or above, denial, don't know), and marital status (married, widowed, divorced, 

separated, never married, living with a partner). 

Statistical Methods 

Descriptive statistics were used to summarize the demographic characteristics of the participants 

and concentrations of biomarkers. Urine creatinine was not needed as a correction factor since it is a laboratory 

measure of blood and does not require urine dilution. Categorical variable data were presented as the number of 

cases (percentage) and underwent testing. Non-normal continuous variable data were presented as the median 

(interquartile range) [M (Q1, Q3)], and analyzed using the Wilcoxon rank sum test. Normal continuous variable 

data were presented as mean ± standard deviation, and analyzed using the independent sample t-test. A natural 

log transformation (ln transformation) was applied to PFAS to establish a normal distribution. Spearman's 
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correlation was used to assess the relationships between chemicals. 

A weighted multivariate logistic regression model was utilized to investigate the correlation between natural 

logarithm (ln) transformed and quartile transformed chemical concentrations and the incidence of diabetes. In 

order to assess the relationship between combined chemical exposure and diabetes, as well as to pinpoint the key 

chemicals influencing the occurrence of diabetes, a WQS regression model was employed. The WQS model is a 

statistical method that assesses the impact of each component of environmental exposure on the overall 

effect using a weighted index. This model has been widely used in evaluating the effects of exposure to 

mixtures[20]. The WQS model calculates quantiles for chemicals and assigns individual weights based on their 

relative importance within the mixture, facilitating the identification of potentially harmful substances. 

The study utilized the Quantile g-Computation model to investigate the association between chemicals and 

diabetes by evaluating the 'mixture effect.' Quantile G-computation is a unique method for analyzing combined 

environmental exposures, as it estimates the parameters of marginal structural models and offers causal effect 

estimates. This model predicts the anticipated change in potential outcomes if a simultaneous intervention is 

implemented for all exposures, potentially while considering confounding factors. Accurate estimates of the true 

effect can be achieved through quantile g calculations when the assumptions of exchangeability, causal consistency, 

positivity, no interference, and correct model specification are met. Statistical analysis was performed using 

R3.4.3, with a two-sided P-value below 0.05 considered statistically significant [21]. 

Note: Due to the high proportion of samples with LOD ≤ 50%, they were not excluded from 

the study population. Instead, these samples were adjusted by dividing them by 2, and then missing values of 

independent variables were excluded. The NHANES protocol was approved by the NCHS research ethics review 

board, and all participants provided informed consent. 

Results 
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Baseline characteristics of the study population 

A total of 11,780 participants were included in this study for statistical analysis. The general characteristics 

of the study population can be found in Table 1. Among these participants, 1,452 were diagnosed with diabetes, 

representing a prevalence of 12.32%. The remaining 10,329 participants were diagnosed as non-diabetic, 

accounting for 87.68% of the sample. Statistical analysis indicated significant differences in age, race, education 

level, marital status, family income, BMI, and diabetes status between patients with and without diabetes (P < 

0.05). However, there was no significant difference in gender between the two groups (P > 0.05). 

 

Distribution of chemical exposure and its association 

The nuclear density distribution was analyzed for all five chemicals, and the results are illustrated in Figure 

1 in the appendix. Figure 1 in the appendix shows that PFUA displays three distinct peaks, while PFNA, MPAH, 

PFHxS, and PFAeA each show a single prominent peak. 

A Spearman correlation analysis was conducted to investigate the relationship between the measured values 

of the five chemicals, as shown in Figure 2. The results indicated that the correlation coefficient between PFUA 

and PFDeA was the highest at 0.76, suggesting a strong positive correlation. Furthermore, the correlation 

coefficient between PFUA and MPAH was 0.69, and between PFDeA and MPAH was 0.66, 

both showing significant positive correlations. On the other hand, the correlation coefficients for the remaining 

chemicals were below 0.2, indicating either a very weak correlation or no correlation at all. This hints at the 

possibility of high collinearity among the variables, necessitating the use of multivariate logistic regression to 

evaluate and confirm the collinearity. 

Prep
rin

t



9 
 

Weighted generalized linear regression 

Univariate logistic analysis was conducted using three models, each adjusted for specific covariates. The 

results are available in Annex Tables 1, 2, and 3. Model 1 included adjusted covariates of gender and age. Model 

2 expanded on this by including additional covariates such as race, PIR, education level, and BMI. Lastly, Model 

3 incorporated sex, age, race, PIR, education level, BMI, marital status, and annual household income as adjusted 

covariates. 

None of the five chemicals showed a significant odds ratio (OR) for diabetes in all three models (P > 0.05). 

Specifically, in the adjusted model 3, the highest quartile (Q4) of PFDeA, PFHxS, and PFNA had values above 1, 

but none were statistically significant (P > 0.05). However, it is important to note that the lack of 

significance could be due to the small sample size and imbalance in the distribution of disease and non-disease 

populations in the study. Therefore, the lack of significance in this study should be interpreted with caution, as it 

may be influenced by these factors. 

In the multivariate weighted logistic regression models, all five chemicals showed a variance inflation factor 

(VIF) of less than 10, suggesting no multicollinearity among them (refer to Table 2). The OR of PFNA on the 

outcome was calculated to be 1.14 (0.91, 1.43) in the multivariate weighted logistic regression model. Nevertheless, 

this relationship was not deemed statistically significant (P = 0.25). 

Weighted quantiles and regression (WQS) 

In the positive constraint model of the WQS, the coefficient for the chemical mixture index showed a weak 

association with diabetes (OR=1.02), which was not statistically significant. However, strong correlations between 

the chemical mixture index coefficient and diabetes were observed in Model 1, Model 2, and Model 3 after 

adjusting for relevant covariates (Model 1: OR=1.77, Model 2: OR=1.83, Model 3: OR=1.83). The results are 

presented in Table 4. Similarly, in the unadjusted model of the negative constraint in the WQS, the OR was 1.98, 
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but it was not statistically significant (P > 0.05). However, after adjusting for covariates, a robust association 

between the chemical mixture index and diabetes was evident in Model 1, Model 2, and Model 3 (Model 1: 

OR=1.87, Model 2: OR=1.90, Model 3: OR=1.90). These findings are summarized in Annex Table 5. 

The first model (Model 1) considered two covariates: gender and age. The second model (Model 2) included 

a wider range of covariates, such as gender, age, race, PIR, education level, and BMI. Finally, the third model 

(Model 3) integrated additional covariates, including sex, age, race, PIR, education, BMI, marital status, and 

annual household income. 

In the positive constraint model of WQS, the substances MPAH, PFHxS, and PFUA are considered to 

be relatively significant, with weights exceeding 1/18 each. Similarly, within the negative constraint model of 

WQS, both PFDeA and PFNA are deemed to be relatively important, with weights surpassing 1/18 for each 

chemical. For more detailed information, please consult Figure 3. 

Quantile g-computation "Mixture effect" evaluation 

For further information on the use of binary results in Q g-comp using the Q g-comp.no boot function, please 

refer to Schedule 6. The Q g-comp.boot function produces a marginal OR. It is important to understand that 

introducing nonexposed covariates, such as confounders, into the model will result in estimations of these 

parameters that are not equivalent. This is because the OR is non-collapsible. Marginal parameters offer estimates 

of population-average exposure effects, which are typically more interpretable and meaningful than conditional 

odds. 

Further adjustments to the covariates were made using Model I, Model II, and Model III. The results of these 

adjustments are illustrated in Figure 8, showcasing four different models (1: no adjustment; 2: Model one; 3: 

Model two; 4: Model three) and their impact on the overall effect for each exposure. It is important to highlight that 

the constraints imposed on the weights in the WQS model may lead to biased estimations of the effects. In 
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contrast, the Q g-comp model allows for weights to shift in different directions, indicating the potential for some 

exposures to be beneficial while others may be harmful. This flexibility also addresses sampling variation that can 

occur with small or medium-sized samples. Within the Q g-comp model, the weights represent the proportion of 

effects aligning in the same direction, although in certain instances, they may correspond to a smaller or larger 

proportion compared to the overall 'mixed' effect. Notably, Figure 4 illustrates that the combined exposure effect 

of PFNA on diabetes is positive in all four models, while exposure to the other four chemicals shows negative 

effects. 

Nonlinearities in the data were addressed using Qg-comp and Qg-comp. BOOT methods were applied to 

develop a model that included an interaction term and quadratic terms for each predictor of chemical exposure. By 

simultaneously accounting for the nonlinear effects of all exposures, a distinct nonlinear trend in the overall 

exposure effect was observed, as shown in Supplementary Figures 2 and 3. Importantly, the smoothed regression 

line aligns with the confidence interval of the marginal linear model, indicating consistency. Additionally, it 

is clear that the OR for the prevalence of PFAS and diabetes increases steadily with each quantile change. 

Discussion 

This study utilized a large sample of data to investigate the potential link between mixed exposure of serum 

perfluoroalkyl and PFAS and diabetes. The statistical analysis of 11,780 participants, revealing a diabetes 

prevalence of 12.32%, uncovered patterns in the baseline characteristics of the study population. The analysis 

brought to light a strong positive correlation between PFUA and PFDeA, indicating a potential high collinearity 

between these PFAS chemicals. This finding underscores the need for further investigative research that could 

have significant implications for environmental health policies and understanding of endocrine 

disorders. Additionally, the Weighted Quantile Sum regression analysis, after adjusting for 

covariates, demonstrated a robust association between the chemical mixture index and diabetes in all models. This 
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suggests a complex, potentially non-linear relationship between PFAS exposure and diabetes, offering new 

insights that could guide future epidemiological studies and risk assessment models. The findings indicate that 

PFAS exposure may be associated with an elevated risk of developing diabetes, particularly showing a positive 

correlation between mixed exposure of PFNA. 

The association between PFAS exposure and diabetes is still a topic of debate in the research community, with 

no consensus reached yet[22]. However, several studies have shown a positive correlation between serum 

PFAS levels and elevated blood glucose indicators in individuals with type 2 diabetes[23,24]. For example, 

Cardenas et al. analyzed participants in the Diabetes Prevention Program (DPP) from 1996 to 1999 and found that 

high PFOS and PFOA levels were linked to increased insulin resistance (HOMA-IR) at baseline. They also found 

associations between high PFOS and PFOA levels and elevated HOMA-β, fasting proinsulin, and glycated 

hemoglobin A1c (HbA1c) levels at baseline. Yet, the follow-up survey revealed a weak correlation between PFAS 

exposure and these blood glucose indicators [24]. In a separate study in Tianjin, China, involving individuals aged 

19-87 years, it was discovered that a 1% increase in serum PFOA and PFNA concentrations was 

significantly associated with higher fasting plasma glucose levels, while a 1% increase in PFAS, PFHxA, and 

PFHxS was linked to higher HbA1c levels [25]. 

Some studies have suggested a potential positive link between serum PFAS levels and an increase in diabetes 

measures, while others have found no significant or inverse associations. To delve deeper into this correlation, Liu 

et al. conducted an analysis using NHANES data from 2013 to 2014. Their findings indicated that branched-chain 

PFOS and linear PFOA were significantly linked to a reduction in fasting plasma glucose. However, there was 

no notable association observed between PFAS and 2-hour plasma glucose (GTT), insulin levels, or HOMA-IR 

[26]. In a similar study, Nelson et al. analyzed NHANES data from 2003 to 2004 to investigate the relationship 

between PFAS (including PFOA, PFNA, PFOS, and PFHxS) and insulin resistance. Their analysis, however, did 
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not identify any significant association [27]. 

Numerous studies have explored the link between PFAS and diabetes occurrence, with results varying 

based on the specific PFAS compounds investigated. Lundin et al. analyzed the diabetes prevalence in individuals 

with high PFOA exposures between 1947 and 1997. Their findings indicated a heightened risk of diabetes and 

diabetes-related mortality in those with moderate exposures, while no notable correlation was observed at low or 

high exposures[28]. Conversely, some other studies have documented either no significant connection or 

a reverse association between PFAS exposure and type 2 diabetes risk[29-31]. 

 Recent investigations into the pathophysiology of chemically-induced diabetes, particularly related to PFAS 

exposure, have revealed potential mechanisms. Studies indicate that PFAS could disrupt endocrine 

function, specifically insulin signaling pathways, leading to insulin resistance, a precursor to type 2 diabetes [32]. 

PFAS tend to accumulate in the liver, a crucial organ in glucose regulation, where they may disrupt glucose 

metabolism and insulin sensitivity[33]. Additionally, PFAS exposure has been associated with changes in lipid 

metabolism, which is closely linked to insulin resistance. The precise molecular pathways through which 

PFAS cause these effects are still being studied but could involve the modulation of nuclear receptors and 

interference with hormone secretion and function [34]. This disruption of metabolic and endocrine pathways may 

contribute to the development of diabetes, emphasizing the importance of further research into the specific 

biological mechanisms underlying PFAS-induced metabolic dysregulation. 

The study benefits from using NHANES data in the United States, which offers a sizable and representative 

sample, and from serologically detecting five PFAS chemicals for subsequent statistical analysis, 

ensuring result reliability. However, there are limitations. Firstly, the cross-sectional nature of the NHANES data 

used in this study hinders establishing temporal or causal associations between 

mixed PFAS exposure and diabetes risk. Secondly, diabetes pathogenesis is intricate, with potential confounding 
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factors like genetics, diet, and lifestyle not considered in the analysis. Additionally, PFAS chemicals undergo 

adsorption-partition reactions with environmental media upon entry into the environment, leading to 

the generation of various metabolites upon entering the human body. Some of these metabolites interact with 

biological macromolecules, causing toxic effects like growth, reproductive, and endocrine toxicity. Despite this, 

the study did not investigate the potential impact of PFAS metabolites on diabetes prevalence. Hence, future 

research should delve into the link between chemical metabolites and diabetes risk, as well as explore the 

physiological mechanisms connecting mixed PFAS exposure and diabetes risk. 

Conclusions 

The results showed no evidence of multicollinearity among the five PFAS chemicals studied. It is important 

to highlight that PFAS compounds have been proposed to potentially increase the risk of diabetes. Furthermore, a 

positive correlation was found between PFNA and the combined exposure effect on diabetes. 
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Figure legend 

Fig. 1 Inclusion and exclusion path diagram 

Fig. 2 Spearman correlation coefficient between pairwise chemical measurements 

Fig. 3 Weight of regression indicators on diabetes in the WQS model. (a) Forward constraints; (b) Negative 

constraints 

Fig. 4 Q G-computation weights for the four models. (a) Model I; (b) Model II; (c) Model III; (d) Model 4 
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Table 1 Population characteristics of diabetes in adults from the US National Health and Nutrition Examination Survey 2002-2018 

 level 
Non-Diabetes 

N=10329（87.68%） 

Diabetes 

N=1451（12.32%） 
P 

Gender (%) Male 4956 (48.0) 734 (50.6) 0.067 

 Female 5373 (52.0) 717 (49.4)  

Age (median [IQR])  46.00 [32.00, 62.00] 63.00 [54.00, 71.00] <0.001 

Race (%) Mexican American 1581 (15.3) 272 (18.7) <0.001 

 Other Hispanic 852 (8.2) 140 (9.6)  

 Non-Hispanic White 4756 (46.0) 527 (36.3)  

 Non-Hispanic Black 2083 (20.2) 370 (25.5)  

 Other Race 1057 (10.2) 142 (9.8)  

Family PIR (median [IQR])  2.18 [1.15, 4.13] 1.79 [1.03, 3.34] <0.001 

Education (%) Less Than 9th Grade 965 (9.3) 282 (19.4) <0.001 

 
9-11th Grade (Includes 12th grade with 

no diploma) 
1398 (13.5) 266 (18.3)  

 High School Grad/GED or Equivalent 2372 (23.0) 314 (21.6)  

 Some College or AA degree 3128 (30.3) 372 (25.6)  

 College Graduate or above 2457 (23.8) 214 (14.7)  

 Refuse 3 (0.0) 0 (0.0)  

 Don't know 6 (0.1) 3 (0.2)  

BMI (median [IQR])  27.60 [24.00, 31.96] 31.05 [27.10, 36.30] <0.001 

Marital (%) Married 5375 (52.0) 808 (55.7) <0.001 

 Widowed 741 (7.2) 222 (15.3)  

 Divorced 1049 (10.2) 201 (13.9)  
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 Separated 329 (3.2) 55 (3.8)  

 Never married 1963 (19.0) 115 (7.9)  

 Living with partner 869 (8.4) 49 (3.4)  

 Refuse 3 (0.0) 1 (0.1)  

Annual household income 

(median [IQR]) 
 7.00 [5.00, 11.00] 6.00 [4.00, 9.00] <0.001 

NHANES Cycles (%) 2003-2004 1191 (11.5) 145 (10.0) <0.001 

 2005-2006 1263 (12.2) 130 (9.0)  

 2007-2008 1369 (13.3) 190 (13.1)  

 2009-2010 1492 (14.4) 177 (12.2)  

 2011-2012 1218 (11.8) 171 (11.8)  

 2013-2014 1369 (13.3) 223 (15.4)  

 2015-2016 1258 (12.2) 203 (14.0)  

 2017-2018 1169 (11.3) 212 (14.6)  

Diabetes (%) 0 10329 (100.0) 0 (0.0) <0.001 

 1 0 (0.0) 1451 (100.0)  
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Table 2 Association of multifactorial PFAS with diabetes 

chemical OR 95% CI) P VIF 

PFDeA 0.94 (0.59, 1.47) 0.775 3.52 

PFHxS 0.78 (0.68, 0.89) 0.000 1.30 

MPAH 0.97 (0.75, 1.25) 0.800 1.26 

PFNA 1.14 (0.91, 1.43) 0.255 2.21 

PFUA 0.93 (0.58, 1.47) 0.744 2.91 
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Supplementary Figure 1 Kernel function density plot of chemical measurements 
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Supplementary Figure 2 Confidence bands for prevalence OR values of PFAS and diabetes 

 

Supplementary Figure 3 Confidence bands of prevalence Pr values for PFAS and diabetes Prep
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Supplementary Table 1 Association of individual PFAS with diabetes, Model I 

 Ln-transform Quartile1 Quartile2 Quartile3 Quartile4 

chemical OR (95%CI) P  OR (95%CI) P OR (95%CI) P OR (95%CI) P 

MPAH 0.66 (0.51, 0.85) 0.002 ref 0.85 (0.79, 0.91) 0.000 0.89 (0.84, 0.94) 0.000 0.76 (0.67, 0.85) 0.000 

PFDeA 0.71 (0.54, 0.92) 0.011 ref 0.87 (0.81, 0.94) 0.000 0.91 (0.86, 0.96) 0.000 0.89 (0.79, 1.00) 0.047 

PFHxS 0.68 (0.6, 0.77) 0.000 ref 0.78 (0.73, 0.85) 0.000 0.83 (0.78, 0.88) 0.000 0.71 (0.63, 0.8) 0.000 

PFNA 0.79 (0.67, 0.93) 0.004 ref 0.91 (0.85, 0.98) 0.014 0.93 (0.88, 0.98) 0.005 0.85 (0.76, 0.96) 0.007 

PFUA 0.65 (0.47, 0.89) 0.007 ref 0.83 (0.77, 0.89) 0.000 0.88 (0.84, 0.93) 0.000 0.83 (0.74, 0.94) 0.002 

Supplementary Table 2 Association of individual PFAS with diabetes, Model II 

 Ln-transform Quartile1 Quartile2 Quartile3 Quartile4 

chemical OR (95%CI) P  OR (95%CI) P OR (95%CI) P OR (95%CI) P 

MPAH 0.71 (0.55, 0.91) 0.008 ref 0.86 (0.8, 0.93) 0.000 0.90 (0.85, 0.95) 0.000 0.79 (0.7, 0.89) 0.000 

PFDeA 0.82 (0.63, 1.06) 0.122 ref 0.93 (0.86, 1) 0.057 0.95 (0.9, 1) 0.074 0.98 (0.87, 1.1) 0.714 

PFHxS 0.75 (0.66, 0.86) 0.000 ref 0.83 (0.77, 0.9) 0.000 0.87 (0.82, 0.92) 0.000 0.78 (0.68, 0.88) 0.000 

PFNA 0.84 (0.71, 0.99) 0.035 ref 0.95 (0.88, 1.03) 0.199 0.95 (0.9, 1.01) 0.101 0.91 (0.8, 1.02) 0.118 

PFUA 0.79 (0.59, 1.06) 0.123 ref 0.89 (0.83, 0.96) 0.003 0.94 (0.89, 1) 0.038 0.95 (0.84, 1.07) 0.391 
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Supplementary Table 3 Association of individual PFAS with diabetes, Model III 

 Ln-transform Quartile1 Quartile2 Quartile3 Quartile4 

chemical OR (95%CI) P  OR (95%CI) P OR (95%CI) P OR (95%CI) P 

MPAH 0.92 (0.71, 1.19) 0.528 ref 0.98 (0.89, 1.07) 0.653 0.97 (0.91, 1.03) 0.320 0.94 (0.81, 1.08) 0.395 

PFDeA 0.92 (0.71, 1.18) 0.499 ref 0.99 (0.92, 1.07) 0.810 0.99 (0.94, 1.06) 0.934 1.08 (0.95, 1.22) 0.257 

PFHxS 0.79 (0.7, 0.9) 0.000 ref 0.86 (0.79, 0.93) 0.000 0.89 (0.84, 0.95) 0.000 0.81 (0.72, 0.92) 0.201 

PFNA 0.96 (0.82, 1.13) 0.646 ref 1.02 (0.94, 1.11) 0.574 1.01 (0.95, 1.07) 0.792 1.01 (0.89, 1.15) 0.821 

PFUA 0.92 (0.69, 1.21) 0.537 ref 1.02 (0.93, 1.11) 0.734 1.00 (0.95, 1.06) 0.965 1.07 (0.94, 1.22) 0.285 
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Supplementary Table 4 Association of WQS positive mixture coefficients of PFAS with diabetes 

model Estimate Std. Error z P (>|z|) 

no ajusted 1.02 0.04 0.46 0.643 

model1 1.77 0.04 -5.79 0.000 

model2 1.83 0.04 -4.18 0.000 

model3 1.83 0.04 -4.11 0.000 

 

Supplementary Table 5 Association of WQS negative mixture coefficients for PFAS with diabetes 

model Estimate Std. Error z P (>|z|) 

no ajusted 1.99 0.04 -0.34 0.737 

model1 1.87 0.04 -3.70 0.000 

model2 1.91 0.05 -2.07 0.000 

model3 1.90 0.05 -2.13 0.000 

 

Supplementary Table 6 Different models of PFAS Quantile g-computation OR for mixture effects 

 
coefficients. 

Estimate 

coefficients. 

Std. Error 

coefficients.Lo

wer.CI 

coefficients.Up

per.CI 

coefficients. 

Z. value 

coefficients. 

Pr. z 

model 1 1.78 0.04 1.72 1.84 -6.70 2.04E-11 
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Fig. 1 Inclusion and exclusion path diagram
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Fig. 2 Spearman correlation coefficient between pairwise chemical measurements

Powered by TCPDF (www.tcpdf.org)

Prep
rin

t



Fig. 3 Weight of regression indicators on diabetes in the WQS model. (a) Forward
constraints; (b) Negative constraints
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Fig. 4 Q G-computation weights for the four models. (a) Model I; (b) Model II; (c) Model III;
(d) Model 4
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