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Identifying core genes in sepsis by LASSO regression 
and SVM-RFE algorithm
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A b s t r a c t

Introduction: Sepsis is a  major disease in intensive care units (ICU), with 
high morbidity and mortality. However, the core genes associated with the 
sepsis diagnosis remain unclear.
Material and methods: By merging five datasets, gene expression profiles 
were obtained: GSE28750, GSE57065, GSE64457, GSE65682 and GSE95233. 
Differentially expressed genes (DEGs) were identified using the Limma pack-
age in R. To examine the enriched functions, both Kyoto Encyclopedia of 
Genes and Genomes (KEGG) and Gene Ontology (GO) were employed. Sub-
sequently, the protein-protein interaction network (PPI) was constructed, 
and module analysis was carried out using STRING and Cytoscape. Further-
more, core genes were identified using support vector machine recursive 
feature elimination (SVM-RFE) analysis and the least absolute shrinkage and 
selection operator (LASSO) model. To verify the diagnostic significance of 
these essential genes, we conducted an analysis of the receiver operating 
characteristic curve (ROC).
Results: We analyzed 230 DEGs, consisting of 183 upregulated DEGs and 
47 downregulated DEGs. The GO and KEGG analyses revealed that the DEGs 
were enriched in immune-related pathways and functions. The DEGs formed 
a PPI network consisting of 180 protein nodes and 351 interaction edges. 
Ultimately, we identified the five critical core genes (C3AR1, CHPT1, RAB32, 
SLC22A4, and SRPK1) common between both algorithms. The analysis of the 
ROC curve demonstrated that the AUC values for the five fundamental genes 
were as follows: 0.881, 0.876, 0.946, 0.927, and 0.931, respectively.
Conclusions: The five core genes screened in this study will help us to inter-
pret the underlying molecular mechanism of sepsis and hopefully become 
potential diagnostic targets.

Key words: sepsis, LASSO regression, support vector machine recursive 
feature elimination (SVM-RFE) algorithm, bioinformatics analysis, 
functional analysis.

Introduction

Sepsis is a  systemic inflammatory response syndrome (SIRS) with 
physiological, pathological and biochemical abnormalities caused by 
maladjustment of the response to infection, with high morbidity and 
mortality [1, 2]. The complex inflammatory responses during sepsis have 
not been fully elucidated. Every year, the number of new cases in the 
world continues to rise. It is reported that there are 6 million deaths due 
to sepsis every year, and it is the main cause of death of patients in 
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intensive care units (ICU) [3]. Although medical 
science has made progress in identifying early di-
agnostic markers for sepsis, such as interleukin-6 
(IL-6), C-reactive protein (CRP) and procalcitonin 
(PCT), their sensitivity and specificity for early de-
tection are still unknown [4]. Blood-based non-in-
vasive biomarkers may be vital to individualized 
treatment of sepsis, and patients receive specific 
treatment because of their recognizable molecular 
characteristics [5]. Clinically, blood culture analysis 
and drug sensitivity results are still the main ways 
to diagnose and treat sepsis, while molecular di-
agnosis is still used for auxiliary diagnosis [6]. So, 
it is urgent to find new potential biomarkers to 
help clinicians diagnose early sepsis quickly.

High-throughput sequencing technology dis-
plays great potential in exploring the genomic 
changes of sepsis [7, 8]. Bioinformatics has been 
developed to analyze and manage the growing bio-
logical data [9]. With the introduction of a compre-
hensive database of gene expression (Gene Expres-
sion Omnibus – GEO) and the rapid development of 
genetic knowledge in the last decade, bioinformat-
ics analysis based on the database not only reveals 
the whole picture of genome changes related to 
sepsis, but also lays a foundation for the research 
of immunotherapy related to sepsis [10, 11]. 

The biomarkers and potential molecular mech-
anisms of sepsis were investigated in this study. 
We downloaded the gene expression matrix from 
GSE28750, GSE57065, GSE64457, GSE65682 and 
GSE95233 for analysis. Then, we examined genes 
that were expressed differentially (DEGs) and 
constructed a  protein-protein interaction (PPI) 
network. The LASSO regression algorithm and 
SVM-RFE algorithm are efficient feature selection 
techniques, which have shown their power in many 
applications. The SVM-RFE algorithm removes se-
quences and reorders features according to SVM-
based recursive features, which is particularly 
suitable for feature gene screening. Therefore, the 
least absolute shrinkage and selection operator 
(LASSO) combined with support vector machine-re-
cursive feature elimination (SVM-RFE) analysis was 
used to select potential key genes to improve the 
accuracy of feature genes. Lastly, the chosen core 
genes were verified using receiver operating char-
acteristic curve (ROC) analysis. This study aimed 
to identify the characteristic genes of sepsis by  
LASSO regression and the SVM-RFE algorithm, and 
the results can provide a reference for the diagno-
sis, treatment and prognostic evaluation of sepsis.

Material and methods

Data source

The gene expression profiles were download-
ed from GEO (http://www.ncbi.nlm.nih.gov/geo/). 

The integrated gene expression matrix from the 
five GEO datasets consisted of 875 sepsis pa-
tients and 117 normal subjects, obtained by gene 
sequencing of human blood samples after cen-
trifugation. Among them, GSE28750 included 21 
cases of sepsis and 20 normal cases; GSE57065 
included 28 cases of sepsis and 25 normal cases; 
GSE64457 included 15 cases of sepsis and 8 nor-
mal cases; GSE65682 included 760 cases of sepsis 
and 42 normal cases; GSE95233 included 51 cas-
es of sepsis and 22 normal cases.

Identification of DEGs 

The probe matrix of the expression array in the 
five GEO datasets is converted to a gene matrix 
using the platform information file, then the pro-
cessed gene matrix files are run through the im-
pulse and limma packages of the R software. The 
data are subjected to missing value estimation 
and log transformation to obtain standardized 
data. The screening criteria for DEGs are a  fold 
change (FC) > 2 and p < 0.05.

Functional enrichment analysis

In order to analyze the molecular mechanism of 
DEGs in sepsis, we annotated and described the 
gene functions in detail. Through the functional 
annotation of Gene Ontology (GO, http://www.ge-
neontology.org), it covers three aspects of biology: 
cell composition (CC), molecular function (MF) and 
biological process (BP). The possible mechanism 
of DEGs was discussed through the enrichment 
analysis of Kyoto Encyclopedia of genes and ge-
nomes (KEGG, http://www.genome.jp/kegg/). The 
analysis and drawing requirements were based on 
the R language package clusterprofiler.

PPI network construction of DEGs

STRING is an online search tool, which can an-
alyze and predict PPI, including physical and func-
tional association, and is used to search among 
known proteins and predict the interaction be-
tween proteins [12]. We used it to establish a PPI 
network of DEGs, requiring a confidence score of 
the connections in this network > 0.15 and exclud-
ing the disconnected nodes in the network.

Screening core genes via LASSO regression 
and SVM-RFE model

To predict sepsis status, we used two machine 
learning algorithms to identify key prognostic 
variables and select sepsis characteristic genes. 
We then created an absolute contraction and se-
lection operator (LASSO) Cox regression model us-
ing the glmnet package in R software to increase 
the model’s plasticity and prevent over-fitting 
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while selecting core genes [13–15]. We excluded 
any subjectively scored genes that were associat-
ed with the difference between normal and sep-
sis samples, unless clearly labelled as such. When 
classifying diseases, we used the support vector 
machine (SVM) approach, a  supervised machine 
learning technique that generates a  decision 
boundary between two categories and allows pre-
dictions of labels from one or more feature vec-
tors. We ensured a clear and concise explanation 
of all technical abbreviations used [16]. SVM re-
cursive feature elimination (SVM-RFE) could select 
the most important genes according to the weight 
of the classifier [17]. SVM-RFE has been widely 
used in the screening of tumor-related core genes 
(such as skin cancer [18], colon cancer [19], and 
gastric cancer [20]), but little research has been 
done in relation to sepsis [21]. Finally, we defined 
the common genes screened by LASSO regression 
and SVM-RFE as the core genes specific to sepsis 
patients. 

Diagnostic values of core genes 

A ROC curve was constructed using the mRNA 
expression data of the core genes to assess the 
predicted values of the markers and to evaluate 
the reliability of the model. To determine the diag-

nostic efficacy of the core gene screening, the area 
under the ROC curve was analyzed.

Results

Identification of DEGs in sepsis

The scatterplot was used to identify DEGs in 
the GSE28750, GSE57065, GSE64457, GSE65682 
and GSE95233 database (Supplementary Figure 
S1). We used the screening criteria of p < 0.01 
and fold change (FC) > 2 to identify differentially 
expressed genes (DEGs). We identified a total of 
230 DEGs, comprising 183 upregulated genes and 
47 downregulated genes. The top 20 genes with 
upregulation and downregulation were displayed 
as a heatmap (Figure 1).

Functional enrichment analysis of DEGs in 
sepsis

GO functional enrichment analysis of DEGs 
was found to be largely focused on neutrophil 
activation, neutrophil degranulation, neutrophil 
activation involved in the immune response, neu-
trophil-mediated immunity, T-cell activation, T-cell 
differentiation and lymphocyte differentiation 
(Figure 2 A) to better elucidate the mechanisms 
by which DEGs affect sepsis characteristics. The 

Figure 1. Heatmap of top 20 genes with upregulated and downregulated DEGs. Red represents gene upregulation 
and blue represents gene upregulation
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Figure 2. Functional enrichment analysis of DEGs. A – GO functional enrichment analysis. B – KEGG pathways 
analysis. In panel A, the bar is colored from red to blue, representing the gradual increase of q-value (range: 
0.004–o 0.012). The colored bars in panel B, from red to blue, represent a progressive increase in the q-value 
(range: 0.01–0.02)
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KEGG pathways of DEGs were mainly enriched in 
Th1 and Th2 cell differentiation, Th17 cell differen-
tiation, hematopoietic cell lineage, inflammatory 
bowel disease, PD-L1 expression and PD-1 check-
point pathway in cancer, Staphylococcus aureus in-
fection, and T cell receptor signaling pathway (Fig-
ure 2 B). Disease Ontology (DO) analysis indicated 
hepatitis, tuberculosis, primary bacterial infectious 
disease, arteriosclerosis, atherosclerosis, arterio-
sclerosis cardiovascular disease, multiple sclerosis, 
hematopoietic system disease, demyelinating dis-
ease, and bacterial infectious disease (Figure 3).

Construction of PPI network

The identified DEGs were utilized to gener-
ate the PPI network using the STRING database, 
resulting in a  network consisting of 180 nodes 
and 351 edges (Supplementary Figure S2). Sub-
sequently, the MCODE plug-in in Cytoscape was 
employed to investigate the functional modules 
within the PPI network. The results illustrated that 
the PPI network includes many genes that were 
not included in the model and four models, among 
which models 1-4 are named, in which model 1 
includes 20 nodes and 63 edges, model 2 includes 
4 nodes and 6 edges, model 3 includes 13 nodes 
and 22 edges, and model 4 includes 6 nodes and 
7 edges.

Screening core genes by LASSO regression 

and SVM-RFE algorithm

In order to analyze the core genes in the PPI 
network made up of DEGs objectively, we applied 
two distinct algorithms to filter underlying mark-
ers. The DEGs were reduced using the LASSO re-
gression algorithm, which confirmed 69 genes as 
diagnostic biomarkers (Figure 4 A). Furthermore, 
16 characteristics among the DEGs were iden-
tified with the SVM-RFE algorithm (Figure 4 B). 
Five overlapping genes (C3AR1, CHPT1, RAB32, 
SLC22A4, and SRPK1) were selected between the 
two algorithms, as shown (Figure 4 C).

Core gene verification 

To elucidate the involvement of core genes in 
sepsis patients, 875 blood specimens from sepsis 
patients and 117 specimens from healthy indi-
viduals were analyzed for mRNA expression. The 
analysis of GEO databases revealed that patients 
with sepsis exhibited higher expression levels of 
C3AR1, CHPT1, RAB32, SLC22A4, and SRPK1 in 
comparison to healthy individuals (Figures 5 A–E, 
p < 0.001). An ROC curve, representing the true 
positive rate and false positive rate with sensitiv-
ity at different boundary points as the ordinate 
and 1-specificity as the abscissa, was also pro-
duced. The accuracy of the test increases as the 
area under the ROC curve grows. The predictive 
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efficacy of C3AR1, CHPT1, RAB32, SLC22A4, and 
SRPK1 in sepsis patients was evaluated using 
ROC curves. The respective areas under the curve 
(AUCs) for C3AR1, CHPT1, RAB32, SLC22A4, and 
SRPK1 were 0.881, 0.876, 0.946, 0.927, and 0.931 
(Figures 6 A–E).

Co-expression analysis of core genes

In order to further explore the co-expression 
relationship of the above five core genes (C3AR1, 
CHPT1, RAB32, SLC22A4 and SRPK1), the co-ex-
pression analysis of blood samples from sepsis 
patients and healthy controls was performed, 
and the results are shown in Figure 7. There 
was a  positive correlation between SPPK1 and 
SLC22A4 in the Con group, and the expression 
of SPPK1 and SLC22A4 was significantly differ-
ent (p < 0.05). However, in the Treat group, there 
was a  positive feedback regulatory relationship 
between SLC22A4 and C3AR1, and the gene ex-
pression was significantly different (p < 0.05). 
The gene expression between RAB32 and CHPT1 
was also different and positively correlated. The 
results suggest that the regulatory relationship 
between SPK1 and SLC22A4 plays an important 
role in healthy normal people. However, the ab-
normal expression of SLC22A4, C3AR1, RAB32 
and CHPT1 may be related to the abnormal ex-
pression of sepsis.

Discussion

Sepsis is a serious infectious disease involving 
multiple factors. Early diagnosis is important, and 
bioinformatics analyses provide new ideas and 
technical tools. Genomics, proteomics and me-
tabolomics can reveal molecular mechanisms, risk 
factors, potential therapeutic targets and drugs. 
These findings help to understand the develop-
mental process, establish early diagnosis, find 
therapeutic targets and improve efficacy.

In this study, after analyzing five GEO datasets 
(GSE28750, GSE57065, GSE64457, GSE65682, 
and GSE95233) with sepsis gene expression se-
quences, 230 DEGs, including 183 up-regulated 
genes and 47 down-regulated genes, were ob-
tained between sepsis and control groups. The GO 
function enrichment of DEGs was mainly in the 
areas of neutrophil granulocyte activation, de-
granulation, immune response, T-cell activation, 
differentiation and lymphocyte differentiation. 
KEGG pathway enrichment of DEGs was in Th1 
and Th2 cell differentiation, Th17 cell differentia-
tion, hematopoietic cell lineage, PD-1 checkpoint 
pathway, Staphylococcus aureus infection, and 
T-cell receptor signaling pathway.

Srisawat et al. [22] assessed neutrophil func-
tion by neutrophil chemotactic activity and  
CD-11b expression; they found that survivors had 
significantly higher neutrophil chemotactic activ-

Figure 4. Screening core genes in the PPI network 
composed of DEGs. A – LASSO regression. B – SVM-
RFE algorithm. C – the five overlapping genes be-
tween the two algorithms. The red circle in panel 
C represents the number of genes screened by the 
SVM-RFE algorithm, and the blue represents the 
number of genes screened by the LASSO regression 
algorithm

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.22

0.20

0.18

0.16

0.14

Bi
no

m
ia

l d
ev

ia
nc

e

RM
SE

 (
cr

os
s-

va
lid

at
io

n)

A

C

B77   75   74   69   69   68   56   30   22   17   9   6   3   1

 –10 –8 –6 –4 –2

Log(l)

64 5 11

 0 50 100 150 200

Variables

N = 16

 LASSO SVM-RFE 



Identifying core genes in sepsis by LASSO regression and SVM-RFE algorithm

Arch Med Sci 7

10

8

6

4

9

8

7

6

5

4

8

7

6

5

11

10

9

8

7

6

10

8

6

4

C3
A

R1
 e

xp
re

ss
io

n
RA

B3
2 

ex
pr

es
si

on
SR

PK
1 

ex
pr

es
si

on

CH
PT

1 
ex

pr
es

si
on

SL
C2

2A
4 

ex
pr

es
si

on

A

C

E

B

D

Figure 5. Expression levels of core genes in sep-
sis were higher in sepsis patients than in healthy 
individuals. A  – C3AR1. B – CHPT1. C – RAB32.  
D – SLC22A4. E – SRPK1

 Con Treat

 Con Treat

 Con Treat

 Con Treat

 Con Treat

p < 0.001

p < 0.001

p < 0.001

p < 0.001

p < 0.001

ity and that reduced neutrophil chemotactic ac-
tivity correlated with 28-day mortality, confirming 
neutrophil chemotactic activity as a novel immune 
biomarker predicting clinical prognosis in patients 
with severe sepsis. Saito et al. [23] explored the 
trend of sepsis-induced T-cell exhaustion and 
the effect of IL-15 on it; the results showed that 
sepsis-induced T-cell exhaustion was significant-
ly more severe in aged mice than in young mice, 
and was accompanied by a decrease in initial CD4 
and CD8 T-cells, an increase in the expression of 
programmed death 1 on T-cells, and a  decrease 
in regulatory T-cell populations; IL-15 significantly 
ameliorated sepsis-induced T cell failure, resulting 

in a significant increase in the number of natural 
killer cells and macrophages and a significant in-
crease in phagocytic activity in aged septic mice. 
It has also been shown that immunosuppression 
and aberrant differentiation of splenic CD4 T cells 
in septic mice can contribute to the amelioration of 
sepsis-induced T-lymphocyte immunosuppression 
and acute organ dysfunction through the mediat-
ed NFAT signaling pathway. CD4 T cell apoptosis 
and dysfunction-mediated immunosuppression 
are key factors contributing to the progression of 
sepsis [24]. Lu et al. [25] reported that using an 
inhibitor of endoplasmic reticulum stress reduced 
apoptosis and maintained CD4 T cell function in 
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Figure 6. ROC curves of the core genes. A – C3AR1. 
B – CHPT1. C – RAB32. D – SLC22A4. E – SRPK1. Red 
is the Treat group, which is the gene expression set 
of sepsis patients. Blue is the Con group, which is 
the gene expression set of a healthy normal person
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renal cells. It has been shown that PD-1, a  con-
ventional cancer checkpoint, is also able to play 
a significant role in sepsis through blockade, but 
has no therapeutic role in patients with previous 
malignancies combined with sepsis [26]. This is in 
general agreement with the results of the annota-
tion/enrichment in this study.

C3AR1, CHPT1, RAB32, SLC22A4 and SRPK1 
screened in this study are relevant to the mech-
anisms of sepsis onset and progression. Brennan 
et al. [27] found that C3AR1, the receptor for the 
complement activation product 3A, is involved in 
negatively regulating the response of neutrophils 
to tissue injury. The C3A/C3AR1 axis mediates 
neutrophil chemotactic signaling and indirectly 
acts as a negative regulator of the PI3K/AKT path-
way through the involvement of C3AR1 in the in-
crease of PTEN activity. It has been shown to be 
a  therapeutic target for neutrophil mobilization/
recruitment and the reduction of inflammatory 
pathology after tissue injury. The main function of 
the kidney is to excrete metabolic wastes, and loss 
of renal function can lead to significant changes in 
metabolites in vivo, which can result in dramatic 
changes in metabolites in the renal cortex, renal 
medulla, and plasma, e.g., CHPT1 is enriched for 
glycerophospholipid metabolism. The findings are 
in agreement with those of Cadenas et al. [28], 
who reported that changes in metabolism-relat-
ed pathways in sepsis-triggered renal injury may 
be due to the fact that RAB32 may be associated 
with aberrant mitochondrial endocrine signaling 
(Golgi-Rab32 pathway), and defects in this path-
way may be responsible for renal hypoplasia and 
sepsis [29]. SLC22A4, an isoform of the solute car-
rier transporter family (SLC22) of transporter pro-
teins, is a key component of the renal proximal tu-
bule in the elimination of endogenous metabolic 
wastes as well as water-soluble exogenous drugs 
and their metabolites [30]. The results are consis-
tent with those of Gottier Nwafor et al. concern-

ing exogenous drugs and their metabolites, and 
sepsis is often accompanied by signs of metabolic 
acidosis [31]. It has been shown that NH4Cl induc-
es up-regulation of SLC22A4 mRNA expression to 
ameliorate metabolic acidosis; thus, it is clear that 
this target plays a  key role in pharmacokinetics 
and waste metabolism. Guo et al. [32] demonstrat-
ed that SRPK1 could be used in the metabolism of 
endogenous drugs and their metabolites, and by 
using molecular biological experiments confirmed 
that SRPK1 regulates PI3K/AKT/FOXO3/NLRP3 
signaling to inhibit sepsis-complicated acute lung 
injury; thus, SRPK1 is a potential biomarker for the 
treatment of sepsis complications.

In conclusion, the core genes screened through 
five data sets affecting the occurrence of sepsis 
are C3AR1, CHPT1, RAB32, SLC22A4 and SRPK1, 
which is supported by the existing theory. Further, 
through gene co-expression analysis, in normal 
healthy people, the regulatory relationship be-
tween SPK1 and SLC22A4 plays an important role. 
However, in the presence of abnormal conditions 
of sepsis, SLC22A4, C3AR1, RAB32, and CHPT1 
may show aberrant expression. This suggests that 
abnormalities in these genes may be involved in 
the development of sepsis. Although this study 
uses a large amount of data for research and anal-
ysis and has theoretical proof, the limitation of 
sample size may affect the final analysis results, 
and further in vivo and in vitro experiments are 
needed for verification.
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Figure 7. Results of co-expression analysis of core genes. The colored bars represent Cor values, which decrease 
from red to blue (1.0 to –1.0)
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