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Cinobufagin disrupts the stability of lipid rafts by 
inhibiting the expression of caveolin-1 to promote  
non-small cell lung cancer cell apoptosis

Zhongqing Xu, Jinwei Li, Shuyu Fang, Mingzhu Lian, Changxiao Zhang, Jiahuan Lu, Kai Sheng

A b s t r a c t

Introduction: The study was designed to explore how cinobufagin (CB) reg-
ulates the development of non-small cell lung cancer (NSCLC) cells through 
lipid rafts. 
Material and methods: The effects of CB at gradient concentrations (0, 0.5, 
1 and 2 μM) on NSCLC cell viability, apoptosis, reactive oxygen species (ROS) 
level, phosphorylation of Akt, and apoptosis- and lipid raft-related protein 
expression were assessed by MTT assay, flow cytometry and Western blot. 
Cholesterol and sphingomyelin were labeled with BODIPY to evaluate the ef-
fect of CB (2 μM) on them. Sucrose density gradient centrifugation was used 
to extract lipid rafts. The  effect of  CB on the  expression and distribution 
of caveolin-1 was determined by immunofluorescence, quantitative reverse 
transcription polymerase chain reaction and Western blot. After overexpres-
sion of caveolin-1, the above experiments were performed again to observe 
whether the regulatory effect of CB was reversed. 
Results: CB inhibited NSCLC cell viability while promoting apoptosis and 
ROS level. CB redistributed the lipid content on the membrane surface and 
reduced the content of caveolin-1 in the cell membrane. In addition, CB re-
pressed the activation of AKT. However, caveolin-1 overexpression reversed 
the effects of CB on apoptosis, AKT activation and lipid raft. 
Conclusions: CB regulates the activity of Akt in lipid rafts by inhibiting cave-
olin-1 expression to promote NSCLC cell apoptosis.
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Introduction

Among the histological types of lung cancer, non-small cell lung can-
cer (NSCLC) accounts for about 85%, with one-third of initially diagnosed 
patients already at stage III [1]. Although the treatment of lung cancer has 
advanced by leaps and bounds in recent years, the survival rate of pa-
tients has not markedly improved [2]. Therefore, seeking effective novel 
treatment strategies is crucial to prolong the survival time of patients. 

In recent years, traditional Chinese medicine has attracted the atten-
tion of  scientists by virtue of  its advantages such as multiple targets 
and small side effects [3, 4]. ChanSu, a  precious Chinese medicine, is 
made from the substance secreted by Bufo gargarizans Cantor or Bufo 
melanostictus Schneider [5]. Cinobufagin (CB) is the  main ingredient 
of ChanSu, with many functions, including anti-tumor activity, immune 
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regulation, pain relief, heart strengthening, etc. 
[6]. Notably, CB has anti-cancer effects on osteo-
sarcoma [7], nasopharyngeal carcinoma [8], mel-
anoma [9], colorectal cancer [10] and lung cancer 
[11]. However, there still exists a  knowledge gap 
in the  regulatory mechanism of  CB in lung can-
cer. Lipid rafts are membrane microdomains rich 
in cholesterol and sphingomyelin with a  variety 
of  special proteins, including caveolin, flotillin 
(FLOT), glycosylphosphatidylinositol-anchored pro-
tein and palmitoyl protein [12]. They have been 
perceived as a platform for interactions between 
various cell surface receptors and signal molecules 
[13]. Jeon et al. proposed that lipid rafts can affect 
the migration of NSCLC cells [14]. Bufalin, an active 
ingredient of ChanSu, induces adhesion of human 
leukemia cells, which may be related to lipid raft 
positioning [15]. However, whether CB regulates 
the development of lung cancer cells through lipid 
rafts is not clear. 

Given the above findings, we assume that CB 
promotes the  apoptosis of  NSCLC cells by regu-
lating lipid rafts to target lipid raft-related signal 
transduction. 

Material and methods

Cell culture and treatment

Human bronchial epithelioid cell line 16HBE (CL-
0249, Procell, China), along with NSCLC cell lines 
A549 (CL0016, Procell, China) and H1299 (CL0165, 
Procell, China), was separately cultured in Ros-
well Park Memorial Institute (RPMI)-1640 medium 
(72400120, GIBCO, USA) containing 10% fetal bo-
vine serum (10091, Thermo Fisher, USA) and 1% 
penicillin streptomycin (15140-122, Thermo Fisher, 
USA) at 37oC with 5% CO2 (Forma Steri-Cycle, Ther-
mo Scientific, USA).

To probe the  effect of  CB (PHL89609, Merck, 
Germany) on NSCLC cells, NSCLC cells were treat-
ed by gradient concentrations of CB (0, 0.5, 1 and 
2 μM) for 24 h [16]. 

Transfection

A  caveolin-1 overexpression vector was con-
structed by cloning the full-length sequence of ca-
veolin-1 into pcDNA3.1+ vector (V87020, Thermo 
Fisher, USA). The transfection was completed with 
the  help of  Lipofectamine RNAiMAX (13778100, 
Thermo Fisher, USA) [17]. Twenty-four hours lat-
er, quantitative reverse transcription polymerase 
chain reaction (qRT-PCR) was carried out, by which 
the success of  cell transfection was determined. 
To ascertain whether CB affected NSCLC cells by 
regulating caveolin-1, A549 or H1299 cells were 
transfected with negative control or caveolin-1 
overexpression vector, and then treated with 2 μM 
CB for 24 h. 

3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl 
tetrazolium bromide (MTT) assay

An MTT kit (40206ES76, YEASEN, China) was 
used for detection of  cell viability [18]. Briefly, 
A549 and H1299 cells were inoculated in the 96-
well plates at a  density of  5,000 cells/well and 
then cultivated with MTT working solution at 37oC 
for 4 h. Thereafter, the  dissolving solution was 
added to further incubate the cells for 4 h. Finally, 
the absorbance at 570 nm was measured by a mi-
croplate reader (HBS-1096A, Sfmit, China). 

Apoptosis

An Annexin V-Fluorescein Isothiocyanate (FITC)/
Propidium Iodide (PI) apoptosis detection kit 
(40302ES20, YEASEN, China) was applied to exam-
ine cell apoptosis as previously reported [19]. Briefly, 
A549 and H1299 cells (5 × 105) were resuspended 
in binding buffer, and then reacted with 5 μl of An-
nexin V-FITC and 10 μl of PI at room temperature for  
15 min. Afterwards, 400 μl of binding buffer was sup-
plemented for dilution. Later, the cell suspension was 
collected and then put into a flow cytometer (DxFLEX, 
Beckman, USA) for detection of cell apoptosis. 

Western blot

Western blot was performed as previously de-
scribed [20]. Specifically, the cells were lysed with 
Radio Immunoprecipitation Assay (RIPA) Lysis 
Buffer (20101ES60, YEASEN, China) and quanti-
fied by a  Bicinchoninic acid (BCA) Protein Assay 
Kit (20201ES76, YEASEN, China). Then, the protein 
was separated and transferred to polyvinylidene 
fluoride (PVDF) membrane (YA1701, Solarbio, Chi-
na). Subsequently, the  membrane was treated 
by blocking solution (36100ES25, YEASEN, Chi-
na) for 1 h. After washing, the  membrane was 
sequentially incubated with primary antibodies 
and secondary antibodies. The primary antibodies 
adopted in this research included those against 
Bcl-2 (1 : 2000, 26 kDa, ab182858), Bax (1 : 1000, 
21 kDa, ab32503), cleaved caspase-3 (1 : 500, 17 
kDa, ab49822), cleaved caspase-9 (1 : 200, 37 kDa, 
ab2324), caveolin-1 (1 : 1000, 20 kDa, ab2910), 
FLOT 2 (1 : 1000, 47 kDa, ab96507), Akt (1 : 500, 
56 kDa, ab8805), phosphor-Akt (p-Akt, ser473,  
1 : 5000, 56 kDa, ab81283), p-Akt (thr308, 1 : 1000, 
56 kDa, ab38449), and β-actin (1 : 1000, 42 kDa, 
ab8226). The  secondary antibodies were horse-
radish peroxidase (HRP)-conjugated goat anti-rab-
bit IgG (1 : 5000, ab6721) and goat anti-mouse 
IgG (1 : 5000, ab6788). All these antibodies were 
purchased from Abcam (UK). β-actin was used as 
an internal control. The protein bands were visu-
alized by iBright CL750 (Thermo Fisher, USA) with 
the  assistance of  Super ECL Detection Reagent 
(36208ES60, YEASEN, China).
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Detection of reactive oxygen species (ROS) 
level

The  detection of  ROS was carried out with 
a ROS detection kit (50101ES01, YEASEN, China) 
[21]. Cells (1 × 106/ml) were reacted with the di-
luted 2,7-dichlorodi-hydrofluorescein diacetate 
(DCFH-DA), followed by being washed with se-
rum-free 1640 medium. The results were recorded 
by the flow cytometer.

Distribution of sphingomyelin  
and cholesterol in cells

BODIPY-labeled cholesterol analog (C12680, 
Thermo Fisher, USA) and sphingomyelin (D3522, 
Thermo Fisher, USA) were used to trace cholester-
ol and sphingomyelin. The  operation was based 
on the research of Mishra et al. [22]. Simply put, 
the  processed cells were resuspended in se-
rum-free medium supplemented with the labeled 
cholesterol analog and sphingomyelin at 4oC for 
0.5 h. After washing, cells were photographed us-
ing a  microscope (400× magnification, FV3000, 
Olympus, Japan). 

Immunofluorescence

The  immunofluorescence staining was con-
ducted as previously documented [23]. A  sterile 
glass slide was placed in 6-well plates and NS-
CLC cells were inoculated on the  glass slide. Af-
ter being immersed in fixing solution (E672002, 
Sangon, China) for 20 min, cells were permeabi-
lized by Triton-X-100 (A110694, Sangon, China) for  
15 min and blocked by blocking solution for  
30 min. Subsequently, cells were reacted with 
anti-caveolin-1 antibody (1 : 50, ab185043, Ab-
cam, UK) at 4oC overnight and counterstained 
with Hoechst staining solution (E607301, Sangon, 
China). Finally, a  fluorescence microscope (IX73, 
Olympus, Japan) was employed to observe the dis-
tribution of caveolin-1 in cells. 

Lipid raft and non-lipid raft fractionation 
for protein analysis

Lipid rafts were isolated as previously instruct-
ed [24]. Briefly, cells were collected and lysed on 
ice. After centrifugation at 12,000 rpm/min for  
10 min at 4oC, the  cell supernatant was collect-
ed and mixed with 1 ml of 80% sucrose solution, 
followed by sequential addition of  30% sucrose  
(2.25 ml) and 5% sucrose (1.5 μl). Subsequently, 
the  sucrose gradients were centrifuged (2 × 105 
×g) at 4oC for 18 h. Finally, 12 fractions (fractions 
3–5 contained lipid rafts; fractions 10–12 were 
non-raft fractions) of proteins were collected and 
analyzed by Western blot. 

Quantitative reverse transcription 
polymerase chain reaction (qRT-PCR)

The  total RNA was extracted by the  RNA ex-
traction kit (19231ES08, YEASEN, China). Re-
verse transcription and qPCR were complet-
ed in the  same reaction tube under the  help 
of a one-step RT-qPCR SYBR Green kit (11143ES50, 
YEASEN, China). The  data were exhibited in 
the  PCR Detection System (TP700, TaKaRa, Ja-
pan). The primers were as follows: caveolin-1 (for-
ward: 5′-GCACAAGCTTTGCATGTCCA-3′; reverse: 
5′-AGTACTCTGGGTAGGAGCAGA-3′); β-actin (for-
ward: 5′-GGGACCTGACTGACTACCTC-3′; reverse: 
5′-ACGCTTCACGAATTTGCGT-3′). β-actin acted as 
the  reference gene. The relative gene expression 
was calculated using the 2-ΔΔCt method [25].

Statistical analysis

Data were analyzed by Graph Prism v8.0 (Graph-
Pad software, California, USA) and presented as 
mean ± standard deviation. One-way analysis 
of variance was used for comparison among mul-
tiple groups. Dunnett’s post-hoc test results are 
shown in Figures 1 to 3, while Bonferroni’s post-
hoc test results are shown in the rest of the figures. 
P < 0.05 was accepted as statistically significant. 

Results

Effects of CB on NSCLC cell viability, 
apoptosis and ROS level

The  chemical structure of  CB is displayed in 
Figure 1 A. CB at gradient concentrations (0.5,  
1 and 2 μM) was confirmed to attenuate the via-
bility of NSCLC cells (Figures 1 B, C, p < 0.05), and 
this inhibitory effect was more evident as the con-
centration of  CB increased. However, CB had no 
significant effects on the viability of 16HBE cells 
(Figure 1 D). Furthermore, it was also proved that 
CB dose-dependently promoted NSCLC cell apop-
tosis (Figures 1 E, F, p < 0.001) but barely affected 
the  apoptosis of  16HBE cells (Figure 1 G). Then, 
the expression of apoptosis-related proteins was 
tested. The  results revealed that as the  concen-
tration of  CB increased, the  protein expression 
of Bcl-2 was reduced, while that of Bax, cleaved 
caspase-3 and cleaved caspase-9 was augmented 
in NSCLC cells (Figure 1 H, I, p < 0.05). As depict-
ed in Figures 2 A, B, CB also dose-dependently in-
creased the level of ROS in NSCLC cells. 

CB redistributed the lipid content on 
the membrane surface by regulating 
the expression of lipid raft-related proteins

Lipid rafts have been reported to occupy a piv-
otal position in the survival and death of cells [26]. 
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Figure 1. Regulatory effect of cinofbufagin (CB) 
on non-small cell lung cancer (NSCLC) cell vi-
ability, apoptosis and apoptosis-related pro-
tein expression. A – Chemical structure of CB. 
B–I – Cells were treated with CB (0, 0.5, 1 and 2 
μM) for 24 h. B–D – The viability of A549, H1299 
and 16HBE cells was detected by 3-(4, 5-dimeth-
ylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 
(MTT) assay. E – The apoptosis of A549, H1299 
and 16HBE cells was detected by flow cytometry.  
*P < 0.05, **p < 0.01, ***p < 0.001 vs. control group



Cinobufagin disrupts the stability of lipid rafts by inhibiting the expression of caveolin-1 to promote non-small cell lung cancer cell apoptosis 

Arch Med Sci 3, June / 2024 891

 CB [μM]

 CB [μM]

Ap
op

to
si

s 
ra

te
 (

%
)

Ap
op

to
si

s 
ra

te
 (

%
)

60

40

20

0

6

4

2

0

H1299

16HBE

Control

Control

0.5 1 2

0.5 1 2

F

G
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**p < 0.01, ***p < 0.001 vs. control group
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tosis-related proteins were evaluated by West-
ern blot. β-actin was used as an internal control. 
Quantified values of at least three independent 
experiments were displayed as mean ± standard 
deviation. *P < 0.05, **p < 0.01, ***p < 0.001 vs. 
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Figure 2. CB promoted the level of reactive oxygen species (ROS) and changed the distribution of cholesterol and 
sphingomyelin on the membrane surface. A, B – The level of ROS in A549 and H1299 cells treated with CB (0, 0.5,  
1 and 2 μM) was measured by flow cytometry. C – The distribution of sphingomyelin and cholesterol was observed 
by a confocal microscope. Scale bar = 400 μm. Quantified values of at least three independent experiments were 
expressed as mean ± standard deviation
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Figure 2. Cont. D – The distribution of sphingomyelin and cholesterol was observed by a confocal microscope. 
Scale bar = 400 μm
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In order to evaluate whether CB affects the biolog-
ical behavior of NSCLC cells by regulating the lipid 
rafts, the changes in the distribution of cholesterol 
and sphingomyelin in cells were scrutinized before 
and after CB treatment. From Figures 2 C, D, it can 
be summarized that cholesterol and sphingomy-
elin were redistributed on the membrane surface 
after CB treatment. Also, the impacts of CB upon 
the expression of  lipid raft-related proteins were 
evaluated. It was found that CB dose-dependent-
ly suppressed the  expression of  caveolin-1 and 
FLOT2, indicating that CB may destroy the integrity 
of the lipid rafts (Figures 3 A, B, p < 0.05). The ac-
tivation of Akt in lipid rafts was associated with 
the integrity of the lipid rafts [27], whilst CB was 
demonstrated to inhibit the level of p-Akt (Ser473 
and Thr308) (p < 0.05). Since 2  μM CB exerted 
the most prominent effect, CB at this concentra-
tion was singled out for subsequent experiments. 
Immunofluorescence experiment results revealed 
that CB can restrain the expression of caveolin-1 
in the cell membrane (Figures 3 C, D). Moreover, 
we isolated the lipid rafts (fractions 3–5) and non-
raft fractions (fractions 10–12), and found that CB 
overtly inhibited the  expression of  caveolin-1 in 
lipid rafts and slightly restrained the  expression 
of caveolin-1 in non-raft fractions (Figures 3 E, F). 

CB regulated NSCLC cell viability, apoptosis, 
ROS level, lipid content distribution, 
lipid raft-related protein expression and 
activation of Akt by inhibiting caveolin-1 
expression

To evaluate whether caveolin-1 participates in 
the effect of CB, caveolin-1 was overexpressed in 

NSCLC cells. The results of both Western blot and 
qRT-PCR indicated that caveolin-1 overexpression 
reversed the inhibitory effects of CB on mRNA and 
protein levels of caveolin-1 (Figures 4 A–D, p < 0.05), 
and also negated the effects of CB on suppressing 
cell viability (Figures 4 E, F, p < 0.001) and promoting 
apoptosis (Figures 5 A, B, p < 0.001). At the same 
time, overexpression of caveolin-1 offset the mod-
ulation of CB on apoptosis-related proteins Bcl-2, 
Bax, cleaved caspase-3 and cleaved caspase-9 
(Figures 5 C, D, p < 0.05). Moreover, the regulatory 
effects of CB on ROS level (Figures 6 A, B), lipid 
content distribution (Figures 6 C, D), lipid raft-re-
lated proteins (Figures 6 E, F, p < 0.001), and phos-
phorylation of Akt (Figures 6 E, F, p < 0.05) were all 
counteracted by caveolin-1 overexpression.

Discussion

CB has been proved to induce the  apoptosis 
of  NSCLC cells by regulating the  AKT pathway 
[16]. Moreover, the effect of CB on the apoptosis 
of  NSCLC cells is time-dependent, and apoptotic 
cells with broken nuclei can be observed after 24 h  
of CB treatment [16]. On this basis, in our study, 
the mechanism of CB affecting NSCLC cell apopto-
sis was revealed to be related to the down-regula-
tion of caveolin-1, which destroys the lipid raft sta-
bility. Specifically, CB down-regulates caveolin-1 
level to redistribute sphingomyelin and cholester-
ol in lipid rafts, leading to down-regulation of AKT 
pathway- and apoptosis-related markers in NSCLC 
cells. At the same time, our study also demonstrat-
ed that CB had no effect on the apoptosis and via-
bility of 16HBE cells. To the best of our knowledge, 
this is the first study reporting the effect of CB on 
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Figure 3. Effects of CB on expression of lipid raft-related proteins and phosphorylation of Akt. A – Expression levels 
of caveolin-1, flotillin 2 (FLOT2), Akt, and phosphor-Akt (p-Akt) in A549 and H1299 cells treated with CB (0, 0.5,  
1 and 2 μM) were measured by Western blot. β-actin was used as the internal control. Quantified values of at least 
three independent experiments were described as mean ± standard deviation. *P < 0.05, **p < 0.01, ***p < 0.001 
vs. control group
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Figure 3. Cont. B – Expression levels of caveolin-1, flotillin 2 (FLOT2), Akt, and phosphor-Akt (p-Akt) in A549 and H1299 
cells treated with CB (0, 0.5, 1 and 2 μM) were measured by Western blot. β-actin was used as the internal control.   
*P < 0.05, **p < 0.01, ***p < 0.001 vs. control group
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Figure 3. Cont. C, D – Immunofluorescence detection of 2 μM CB on the distribution of lipid raft marker caveolin-1 
in cells. Scale bar = 400 μm. E, F – The distribution of caveolin-1 in lipid rafts (3–5) and non-raft fractions (10–12) 
of A549 and H1299 cells treated with 2 μM CB. Quantified values of at least three independent experiments were 
described as mean ± standard deviation. *P < 0.05, **p < 0.01, ***p < 0.001 vs. control group
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Figure 4. Overexpression of caveolin-1 reversed the inhibitory effects of CB on caveolin-1 protein level and viability 
of NSCLC cells. A549 or H1299 cells were transfected with negative control (NC) or caveolin-1 overexpression vector, 
followed by treatment of 2 μM CB for 24 h. A–D – Western blot and quantitative reverse transcription polymerase 
chain reaction (qRT-PCR0 were applied to detect caveolin-1 mRNA and protein expression in cells of each group. 
β-actin was used as the internal control. E, F – MTT assay was conducted to determine the viability of cells in each 
group. Quantified values of at least three independent experiments were presented as mean ± standard deviation. 
*P < 0.05, **p < 0.01, ***p < 0.001 vs. control group or CB + NC group
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Figure 5. Caveolin-1 overexpression reversed the effects of CB on NSCLC cell apoptosis and the expression of apop-
tosis-related proteins. A549 or H1299 cells were transfected with NC or caveolin-1 overexpression vector and 
then treated with 2 μM CB for 24 h. A, B – The apoptosis of cells in each group was detected by flow cytometry.  
*P < 0.05, **p < 0.01, ***p < 0.001 vs. control group or CB + NC group
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Figure 5. Cont. C – The levels of apoptosis-related proteins in each group were measured by Western blot. β-actin 
was used as an internal control. Quantified values of at least three independent experiments were displayed as 
mean ± standard deviation. *P < 0.05, **p < 0.01, ***p < 0.001 vs. control group or CB + NC group
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Figure 5. Cont. D – The levels of apoptosis-related 
proteins in each group were measured by Western 
blot. β-actin was used as an internal control. Quan-
tified values of at least three independent experi-
ments were displayed as mean ± standard devia-
tion. *P < 0.05, **p < 0.01, ***p < 0.001 vs. control 
group or CB + NC group
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A

B

Figure 6. Caveolin-1 reversed the effects of CB on level of ROS, distribution of cholesterol and sphingomyelin as 
well as expression of FLOT2 and p-Akt. A549 or H1299 cells were subjected to transfection of NC or caveolin-1 over-
expression vector, followed by treatment of 2 μM CB for 24 h. A, B – The level of ROS in cells of each group was de-
tected by flow cytometry. C – The images of the distribution of sphingomyelin and cholesterol in each group were 
captured by a confocal microscope (Scale bar = 400 μm). *P < 0.05, ***p < 0.001 vs. control group or CB + NC group

A549 Cholesterol Sphingomyelin Overlay

CB

×2
00

CB
 +

 C
av

eo
lin

-1

C



Zhongqing Xu, Jinwei Li, Shuyu Fang, Mingzhu Lian, Changxiao Zhang, Jiahuan Lu, Kai Sheng

904 Arch Med Sci 3, June / 2024

Figure 6. Cont. D – The images of the distribution of sphingomyelin and cholesterol in each group were captured by 
a confocal microscope (Scale bar = 400 μm). E – The levels of FLOT2, Akt, and p-Akt in A549 and H1299 cells were 
tested by Western blot. β-actin was used as the internal control. Quantified values of at least three independent 
experiments were described as mean ± standard deviation. *P < 0.05, ***p < 0.001 vs. control group or CB + NC 
group
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Figure 6. Cont. F – The levels of FLOT2, Akt, and p-Akt in A549 and H1299 cells were tested by Western blot. β-actin 
was used as the internal control. Quantified values of at least three independent experiments were described as 
mean ± standard deviation. *P < 0.05, ***p < 0.001 vs. control group or CB + NC group
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undermining the integrity of  lipid rafts by induc-
ing the reduction of cholesterol in lipid rafts and 
the down-regulation of caveolin-1. 

Studies have found that cancer cells contain 
more lipid rafts than normal cells, so regulating 
the  lipid rafts to affect the death of cancer cells 
has potential therapeutic significance [27]. Lip-
id rafts are rich in sphingolipids and cholester-
ol, which can be damaged by changing the  level 
of  cholesterol or degrading the  sphingolipids in 
the cell membrane. Mishra et al. suggested that 
cedrol impinges on the  integrity of  lipid rafts by 
modulating the  redistributions of  cholesterol 
and sphingomyelin, thus triggering the  apopto-
sis of cancer cells [22]. In this study, we observed 
that CB can change the distribution of cholesterol 
and sphingomyelin in NSCLC cells, indicating that 
the anti-cancer function of CB may be related to 
the regulation of lipid rafts. 

A  more widely accepted hypothesis is that 
the components of lipid rafts, including cholester-
ol and sphingomyelin, will change as different pro-
teins and cell molecules gather in the micro region. 
In this study, CB could partially change the  level 
of caveolin-1 in lipid rafts, signifying that the regu-
latory effect of CB on the stability of lipid rafts was 
associated with the down-regulation of caveolin-1 
in lipid rafts. Caveolin-1 is a vital marker of cav-
eolae on lipid rafts. A decrease in the proportion 
of caveolin-1 will lead to the destruction of the in-
tegrity of  the  lipid raft, which is necessary for 
the survival of cancer cells [28]. Studies have con-
firmed that caveolin-1 is differentially expressed in 
various tumors [29]. Remarkably, high expression 
of caveolin-1 has a close relation with the aggres-
siveness and radiation resistance of  lung cancer 
cells [30]. In addition, Wang et al. reported that 
RANKL-induced migration of gastric cancer cells is 
at least partially dependent on lipid rafts and their 
major component, caveolin-1, and is promoted by 
activation of  c-Src and caveolin-1 [31]. The  inhi-
bition of caveolin-1 has been proved to enhance 
the apoptosis of NSCLC cells [32]. The  inhibitory 
effect of caveolin-1 on cancer cell apoptosis seems 
to be related to the negative regulation of TRAIL 
[33], a  gene that may induce specific apoptosis 
of  cancer cells [34]. Similar to previous studies, 
we found that the  overexpression of  caveolin-1 
reversed the promoting effect of CB on the apop-
tosis of NSCLC cells, implying that CB played an 
anti-cancer role by down-regulating the caveolin-1 
level to disrupt the stability of the lipid raft.

In the cancer field, many survival-related path-
ways have been proven to be associated with lipid 
rafts, such as the AKT pathway [27]. AKT, a serine/
threonine protein kinase, can mediate the survival 
signal of  cells. When the  activity of  Akt was in-
tensified, p-Akt at thr308 and ser473 sites was 

activated to prevent NSCLC cells from undergo-
ing apoptosis [35]. When the lipid raft domain is 
destroyed, the  phosphorylation level of  Akt will 
also be affected [36]. In this study, CB could hin-
der the activation of  the AKT pathway in NSCLC 
cells, which is consistent with a previously report-
ed conclusion that CB can impede AKT activation 
in melanoma cells [37], hepatocellular carcinoma 
cells [38] and NSCLC cells [16]. In addition, stud-
ies have also revealed that caveolin-1 can activate 
the AKT pathway, and blocking the caveolin-1/AKT 
pathway can enhance the apoptosis of NSCLC cells 
[32, 39]. The effect of caveolin-1 on AKT activation 
may be related to its interaction with and inhibi-
tion of serine/threonine protein phosphatase PP1 
and PP2A through the binding site of the scaffold 
domain [40]. Interestingly, we found that caveo-
lin-1 neutralized the  regulation of p-AKT protein 
by CB, indicating that CB inhibited the expression 
of  p-AKT protein by down-regulating the  caveo-
lin-1 level.

However, this study has some limitations. A pri-
or study reported that FLOT is overexpressed in 
multiple cancers [41]. Also, Zhu et al. stated that 
Pulsatilla saponin E affects the activity of Akt by 
repressing the FLOT-2 level to promote the apopto-
sis of NSCLC cells [42]. Similarly, we have demon-
strated that CB can down-regulate the expression 
of FLOT-2. Nevertheless, whether CB depends on 
FLOT2 to exert anti-cancer effects has not been 
confirmed yet. In addition, our research was 
confined to the  mechanism of  CB against NS-
CLC at the  cellular level, and further verification 
is required in subsequent in vivo experiments. It 
is necessary to carry out similar experiments on 
other members of  cardiac glycosides other than 
CB, so as to understand whether this is a specific 
effect brought on by CB.

In conclusion, collectively, our research proves 
that CB destroys the stability of lipid rafts by sup-
pressing the expression of caveolin1 in lipid rafts, 
which leads to the inactivation of the AKT pathway, 
thus promoting cell apoptosis. In addition, CB can 
inhibit cancer cells without damaging normal cells, 
suggesting its great potential as an anti-cancer 
drug. Our findings may provide a new theoretical 
basis for the anti-cancer application of CB and bring 
a broad prospect for the treatment of NSCLC.
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