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TREM-1 inhibition or ondansetron administration 
ameliorates NLRP3 inflammasome and pyroptosis  
in traumatic brain injury-induced acute lung injury 

Fen Li1,2, Na Qin1,2, Yiqin Yu1,2, Rui Dong1,2, Xiaojie Li1,2, Shenhai Gong3, Zhenhua Zeng4,5, Lin Huang1,2,5,  
Hong Yang1,2,5

A b s t r a c t

Introduction: Recently, NLR family pyrin domain containing 3 (NLRP3) and py-
roptosis have been reported to be involved in traumatic brain injury-induced 
acute lung injury (TBI-ALI). Studies have shown that triggering receptor ex-
pressed on myeloid cells-1 (TREM-1) may be one of the upstream molecules reg-
ulating NLRP3/pyroptosis, and 5-hydroxytryptamine type 3-receptor (5-HT3R)  
antagonists can inhibit NLRP3/pyroptosis. However, the role of TRME-1 in TBI- 
ALI, the therapeutic effect of 5-HT3R inhibition on TBI-ALI and its mechanism 
are still unclear. Therefore, this study aimed to evaluate the protective effect 
of ondansetron, a 5-HT3 inhibitor, on TBI-ALI, and to explore whether the un-
derlying mechanism is related to the regulation of TREM-1.
Material and methods: A TBI-ALI rat model was constructed via lateral fluid 
percussion (LFP) brain injury, and either TREM-1 inhibitor (LP17) or ondanse-
tron was administered as needed. 
Results: TBI induced NLRP3 inflammasome, pyroptosis, and TREM-1 activa-
tion in rat lung tissues in a  time-dependent manner. Inhibition of TREM-1 
activity attenuated TBI-ALI; this is evident from reduced pathological scores, 
wet/dry ratios, and bronchoalveolar lavage fluid protein levels and alleviated 
NLRP3 inflammasome/pyroptosis. In addition, ondansetron reduced NLRP3 
inflammasome/pyroptosis and alleviated TBI-ALI. Moreover, ondansetron re-
duced TREM-1 activation in macrophages and lung tissue.
Conclusions: Ondansetron alleviated TBI-ALI. In terms of mechanism, TREM-1  
promotes TBI-ALI via the NLRP3-related pyroptosis pathway, and the protective 
effect of ondansetron on TBI-ALI may be related to the inhibition of TREM-1.

Key words: traumatic brain injury, acute lung injury, pyroptosis, 
ondansetron, triggering receptor expressed on myeloid cells-1.

Introduction

Traumatic brain injury (TBI) is a  critical public health concern with 
high mortality and morbidity worldwide [1]. Approximately 20–30% of 
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TBI patients develop acute lung injury (ALI), and 
lung dysfunction further exacerbates TBI [2, 3]. 
To date, the pathogenesis of TBI-induced ALI (TBI-
ALI) remains unclear. 

Systemic inflammatory responses play a crucial 
role in the pathogenesis of TBI-ALI [4]. Pyroptosis 
is a  type of cell death that possesses potential 
for inflammation and, at an increased rate, plays 
a critical role in promoting systemic inflammation. 
NLR family pyrin domain containing 3 (NLRP3) in-
flammasome activation is a key step in pyroptosis 
[5, 6]. It has been shown that TBI activates NLRP3 
inflammation and pyroptosis in lung tissue and 
aggravate TBI-ALI [7]. Moreover, ameliorating in-
flammasome-induced pyroptosis could attenuate 
TBI-ALI [8]. After pro-caspase-1 stimulation by 
NLRP3, a  cleaved p20 fragment leads to the re-
lease of pro-inflammatory cytokines [9]. Further-
more, p20 also induces the cleavage of inactive 
gasdermin D (GSDMD) into the active GSDMD-NT 
fragment, which can bind to cell membranes in 
lung tissues to induce pyroptosis [10]. 

Triggering receptor expressed on myeloid 
cells-1 (TREM-1), a transmembrane immunoglob-
ulin superfamily receptor, is a potent pro-inflam-
matory amplifier. It has been shown that TREM-1  
mediates pyroptosis in the rat middle cerebral ar-
tery occlusion model [11]. Previous studies have 
shown that blocking TREM-1 activation can inhibit 
NLRP3 inflammasome activation, thereby reducing 
lipopolysaccharide (LPS)-induced ALI [12]. It has 
been reported that TREM-1 can contribute to neu-
roinflammatory injury in experimental subarach-
noid hemorrhage via NLRP3 inflammasome-medi-
ated pyroptosis [13]. However, the role of TREM-1 
in TBI-ALI is not fully understood. Herein, we hy-
pothesize that TREM-1 could activate NLRP3-relat-
ed pyroptosis after TBI-ALI, and the inhibition of 
TREM-1 may be an effective treatment for TBI-ALI.

It is reported that ondansetron (OD), a  5-hy-
droxytryptamine type-3 (5-HT3R) receptor antag-
onist, reduces blood–brain barrier damage and 
brain edema to exert neuroprotective effects [14]. 
Studies have shown that OD reduces the release of 
5-HT and exerts therapeutic effects in pain-related 
behaviors and neuroinflammation after TBI [15]. 
5-HT3R exists on the surface of macrophages, and 
its antagonists have shown effects against NLRP3 
activation and neuroinflammation in animal mod-
els of Alzheimer’s disease [16]. However, whether 
OD has a therapeutic effect on TBI-ALI and its un-
derlying pharmacological mechanisms are unclear.

Therefore, using a  lateral fluid percussion (LFP) 
brain injury rat model with pharmacological interven-
tion, this study aims to evaluate the protective effect 
of ondansetron on TBI-ALI, and to explore whether 
the underlying mechanism is related to NLPR3 acti-
vation and pyroptosis regulated by TREM-1. 

Material and methods 

Animals

Adult male Sprague-Dawley rats (12 weeks 
old, 250–320 g) were obtained from the Labora-
tory Animal Center of Southern Medical Univer-
sity, P.R. China [Certification: SYXK (Guangdong) 
2021-0041]. The rats were housed at a standard 
temperature of 24 ±1°C under a 12 h light-dark 
cycle (dark, 8:00 pm–8:00 am), with free access to 
food and water. Our animal experiments and op-
erations were performed in accordance with the 
National Institutes of Health guidelines and were 
approved by the local Animal Care and Use Com-
mittee of Southern Medical University, Guang-
zhou, China.

Experimental groups and drug 
administration

According to different experimental purposes, 
rats were randomly assigned to different groups 
in accordance with the random number table.  
To clarify the effects of TBI on NLRP3 activation, 
pyroptosis, and TREM-1 expression in lung tissue, 
rats were divided into a  sham group and a  TBI 
group at different timepoints (24, 48, and 72 h 
following TBI). For TREM-1 intervention, rats were 
randomized to the sham group, TBI + NS (normal 
saline) group and TBI + LP17 (TREM-1 inhibitory 
peptide) group. To clarify whether OD has a pro-
tective effect following TBI-ALI, rats were random-
ized to the sham group, the TBI + NS group, and 
the TBI + OD group. LP17 (4 mg/kg, diluted in nor-
mal saline; Zhuantai Co. Ltd., Hangzhou, China) or 
OD (2 mg/kg; Oubei, Shandong, China) was, ac-
cordingly, applied intravenously 30 min after TBI 
with a pre-determined dose based on a previous 
study [17, 18]. For sample size of the animals,  
N = 3–5 per group, depending on the particular 
experiment. 

Lateral fluid percussion brain injury 
operation

The rat model of TBI-ALI induced by LFP brain 
injury was constructed based on the model report-
ed in our previous study but with a few modifica-
tions [7, 19]. In summary, rats were anesthetized 
with isoflurane and placed in a stereotaxic frame. 
Their scalp and temporal muscles were removed. 
The skull was then pierced through at 2.5 mm lat-
eral to the sagittal sinus and centered between the 
bregma and lambda to create a  4.8 mm cranial 
cavity. A hollow female Luer-Lok fitting was insert-
ed directly into the dura region and secured using 
dental cement. The female Luer-Lok was connected 
to the fluid percussion injury device via a transduc-
er (Biomedical Engineering Facility, Medical College 
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of Virginia, USA). A metal pendulum was released 
from a pre-determined height, resulting in a swift 
injection of normal saline into the closed cranial 
cavity, leading to TBI. An oscilloscope was used to 
elicit, control, and record a pulse of increased intra-
cranial pressure lasting 21–23 ms (Agilent 54622D, 
MEGAZoom, Germany). By fluctuating the exertion 
generated by the pendulum, the severity of the in-
jury was altered. This experiment leads to severe 
damage of 3.0 ±0.2 atm [20]. Sham rats were ex-
posed to identical surgical procedures, including 
craniotomy, but not injured. Brain tissue samples 
from the injury site and lung tissue samples of rats 
were collected for future experiments.

Histopathological examination

Rat lung tissues were fixed in 4% paraformalde-
hyde for 48 h before paraffin embedding. Sections 
were sliced and stained with hematoxylin and eo-
sin (H&E), and examined under a light microscope 
(Olympus, Tokyo, Japan) to observe lung injury. 
A  standardized and validated semiquantitative 
scoring system in accordance with the American 
Thoracic Society workshop report was applied to 
evaluate lung injury as previously published and 
as described in Table I [21, 22].

Wet/dry ratio estimation

The lungs were weighed immediately for wet 
weight after euthanizing the rats. The dry weight 
of lung tissues was determined after drying at  
60°C for 24 h. Lung wet/dry ratios indicate pulmo-
nary edema and congestion.

Western blotting

Protein was isolated from lung tissues, sepa-
rated by 8–12% SDS-PAGE under reducing condi-
tions before being transferred to 0.45 μm polyvi-
nylidene difluoride membranes. The membranes 
were incubated with the following primary anti-
bodies: TREM-1 (1 : 1000; DF6091, Affinity Biosci-
ence, Jiangsu, China), Interleukin 6 (IL-6) (1 : 1000; 
DF6087, Affinity Bioscience, Jiangsu, China), tumor 
necrosis factor-a (TNF-α) (1 : 1000; AF7014, Affin-
ity Bioscience, Jiangsu, China), HMGB1 (1 : 5000; 

orb195321, Biorbyt, San Francisco, CA, USA), IL-18 
(1 : 1000; DF6562, Affinity Bioscience, Jiangsu, 
China), IL-1β (1 : 1000; YT2322, Immunoway, Ji-
angsu, China), ASC (1 : 1000; DF6304, Affinity Bio-
science, Jiangsu, China), NLRP3 (1 : 1000; #15101, 
Cell Signaling Technology, MA, USA), GSDMD  
(1 : 500; sc-393656, Santa Cruz Biotechnology, 
CA, USA), and caspase-1 (1 : 500; sc-56036, San-
ta Cruz Biotechnology, CA, USA) at 4°C overnight. 
Subsequently, the membranes were washed with 
TBST (Tris-buffered saline with Tween) three times 
and incubated for 1 h at room temperature with 
horseradish peroxidase (HRP)-conjugated an-
ti-rabbit or anti-mouse IgG antibody as the sec-
ondary antibody (1 : 5000; CW0102S, Jiangsu, 
China). Enhanced chemiluminescence was used 
to detect bound antibodies (Meilunbio, Dalian, 
Liaoning, China) using the Tanon imaging system 
(Tanon-5200, Shanghai, China). The internal con-
trol was β-actin gene expression.

Immunofluorescence

After fixation and dehydration, the frozen sec-
tions of rat lung tissues were prepared. Primary 
alveolar macrophages (AMs) from bronchoalve-
olar lavage fluid (BALF) were seeded at 3 × 104 

cells per well on 24-well glass slides and incu-
bated for 6 h to enable attachment. The tissue 
sections and cells were fixed with 4% methanol, 
perforation with 0.1% Triton x-100 and blocked 
for 1 h in 5% BSA and 0.1% Tween-20 in PBS at 
room temperature. The slides were incubated 
with primary antibodies against GSDMD (1 : 100; 
AF4012, Affinity Bioscience, Jiangsu, China) and  
CD68 (1 : 500; ab283654, Abcam, Cambridge, UK) 
at 4°C overnight. AMs were incubated with prima-
ry antibodies against CD68 and TREM-1 (1 : 100). 
Subsequently, second antibodies conjugated to 
Alexa Fluor-647 (1 : 200; ab150075, Abcam, Cam-
bridge, UK) or fluorescein isothiocyanate (1 : 300; 
B40593, Thermo Fisher Scientific, CA, USA) were 
applied. Nuclei were counterstained with 4,6-di-
amidino-2-phenylindole (DAPI; 1 : 500; Beyotime 
Institute of Biotechnology, Shanghai, China). The 
images were obtained by laser scanning confocal 
microscope (Zeiss LSM780, Thuringia, Germany).

Table I. Lung injury scoring system [22]

Measurement criteria Score per field

0 1 2

A. Neutrophils in the alveolar space Not found 1–5 > 5

B. Neutrophils in the interstitial space Not found 1–5 > 5

C. Hyaline membranes Not found 1 > 1

D. Proteinaceous debris filling the airspaces Not found 1 > 1

E. Alveolar septal thickening < 2× 2–4× > 4×

Score = [(20 × A) + (14 × B) + (7 × C) + (2 × D)]/(field number × 100).
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Real-time PCR

Total RNA was extracted from lung tissues us-
ing the RNAiso Plus reagent (Takara, Otsu, Japan). 
First-strand cDNA was synthesized using the re-
verse transcription kit (Vazyme Biotech, Nanjing, 
China), according to the manufacturer’s protocols. 
In the presence of fluorescent dye (SYBR Green I),  
the real-time PCR reaction was performed us-
ing quantitative PCR (Applied Biosystems, Ther-
mo Fisher Scientific, CA, USA). TREM-1 relative 
mRNA expression was normalized using β-actin 
and studied using the 2-ΔΔCt method. The primer 
sequences (Tsingke Biotechnology, Beijing, Jiang-
su, China) are listed below (F – forward primer,  
R – reverse primer):

Rat TREM-1-F: GAACGACCCTGTTCTGCTCT; R: 
GTGGAGACACTCGTAGGATCTG

Rat β-actin-F: TGCTGTCCCTGTATGCCTCTG; R: 
TGATGTCACGCACGATTTCC

Immunohistochemical analysis

Formaldehyde-fixed lung tissues were embed-
ded in paraffin and cut into 4 μm thick specimens 
before being deparaffinized with xylene and incu-
bated with 3% H2O2 for 10 min. Antigens were sal-
vaged by microwaving the specimens in citric acid 
buffer. Lung sections were incubated overnight at 
4°C with a rabbit anti-TREM-1 polyclonal antibody 
(1 :  100, Affinity Bioscience, Jiangsu, China). After 
being rinsed , the sections were incubated with 
HRP-conjugated secondary antibody (#ab205718, 
Abcam, Cambridge, UK). Tissue sections were 
then stained with 3,3’-diaminobenzidine (DAB) 
and counterstained with hematoxylin. Images 
were captured using a light microscope (Olympus, 
Tokyo, Japan).

BALF protein

BALF was harvested by washing the lung tis-
sues three times with 5 ml of phosphate-buffered 
saline (PBS) using a tracheal cannula and centri-
fuging them at 2000 rpm for 10 min at 4°C. The 
protein concentration in the cell-free superna-
tants was determined using a BCA protein assay 
kit (Beyotime Institute of Biotechnology, Shang-
hai, China).

Statistical analysis

SPSS 26.0 statistical software (IBM, Armonk, 
NY, USA) was used for all statistical analyses. 
One-way ANOVA was used to determine the sta-
tistical differences between groups, and the Stu-
dent-Newman-Keuls test was utilized for post-hoc 
multiple comparisons. The results are presented 
as the mean ± standard deviation. Statistical sig-
nificance was defined as p < 0.05.

Results

TBI-activated NLRP3 inflammasome  
and pyroptosis in lung tissues

We confirmed whether TBI could induce ALI in 
the rat model. As predicted, on comparison with 
the sham group, a  high percentage of apoptotic 
cells was observed in injured brain tissues com-
posed of the cortex and hippocampus of TBI rats 
(Figure 1 A). Moreover, interstitial edema, severe 
alveolar hemorrhage, and extensive inflammatory 
cell infiltration were observed in rat lungs at dif-
ferent time points (24 h, 48 h, and 72 h), accom-
panied by gradually increasing lung injury scores 
(Figures 1 B, C) and wet/dry ratios (Figure 1 D). 

We next explored the effect of TBI on the NLRP3 
inflammasome and pyroptosis in the lung tissue. 
The expression of NLRP3 inflammasome-related 
proteins, including NLRP3, apoptosis-associated 
speck-like protein (ASC), and cleaved caspase-1, 
as well as the contents of mature IL-1β and ma-
ture IL-18, considerably increased in lung tissue of 
rats within 72 h after TBI (Figure 1 E). Notably, the 
levels of full-length GSDMD and N-terminal GSD-
MD (GSDMD-NT, an active form of GSDMD) in-
creased significantly at 48 h after TBI (Figure 1 K)  
with markedly elevated GSDMD expression in im-
munofluorescence analysis (Figure 1 M).

TREM-1 inhibition attenuated TBI-ALI

To explore the role of TREM-1 in TBI-ALI, we de-
termined the mRNA and protein levels of TREM-1 
in lung tissue after TBI. The expression of TREM-1 
mRNA (Figure 2 A) and protein levels (Figures 2 B, C) 
were significantly upregulated following TBI in rats 
compared to the sham group. Immunohistochem-
istry results confirmed increased TREM-1 expres-
sion at 48 h after TBI (Figure 2 D). Correspondingly, 
the expression of pro-inflammation cytokines in-
creased significantly after TBI (Figures 2 E–H). 

To further clarify the role of TREM-1 in TBI-ALI, 
we administered LP17, a  chemical inhibitor of 
TREM-1, to TBI rats. LP17 reduced alveolar wall 
thickening and immune cell infiltration (Figure 2 I)  
and lowered lung injury scores (Figure 2 J), lung 
wet/dry ratios (Figure 2 K), and BALF total protein 
content (Figure 2 L) after TBI. LP17 also inhibited 
the expression of NLRP3, ASC, cleaved caspase-1, 
mature IL-1β, and mature IL-18 (Figures 2 M–S). 
These results collectively suggest that the in-
creased NLRP3 inflammasome expression after 
TBI-ALI is dependent on TREM-1 activation.

OD suppressed NLRP3 inflammasome and 
pyroptosis and ameliorated ALI

To confirm the therapeutic effect and mecha-
nism of OD on TBI-ALI, we tested NLRP3 inflam-
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Figure 1. TBI induced NLRP3 inflammasome and pyroptosis in lung tissue. A – Toluidine blue staining of the cortex 
and hippocampus. Scale bar = 250 μm for the upper row and the zoom of the outlined areas for the lower row, arrows 
for apoptotic neurons, N = 4. B – H&E staining of lung tissues at 24 h, 48 h, and 72 h post-TBI. scale bar = 100 μm  
for original magnification. Green arrows for interstitial edema; blue arrows for inflammatory infiltration; black 
arrows for hemorrhage. N = 4. C – Lung injury scores based on the histopathological staining of lungs. D – Wet/
dry weight ratio of the lungs. N = 4. E – Representative western blots of NLRP3, Cleaved caspase-1, ASC, IL-18, and 
IL-1β in lung tissues. Densitometric analysis of (F) NLRP3, (G) Cleaved caspase-1, (H) ASC, (I) IL-18, and (J) IL-1β. 
N = 3. K – Representative western blots of full-length GSDMD (GSDMD-FL) and GSDMD-N domain (GSDMD-NT) 
protein levels in lung tissues.
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Kerr et al. proposed the concept of the neuro-re-
spiratory-inflammasome axis, emphasizing the 
role of inflammasome signaling in TBI-ALI [24]. 
Our study also supports the existence of various 
activated inflammasome-related cytokines such 
as IL-6, IL-1β, IL-18, TNF-α, and HMGB1 in lung tis-
sue after TBI. Contrary to what Kerr et al. reported, 
we found that the time to ALI after TBI was 48 h,  
much later than the 4 h reported by them [8]. An-
other study found that the lung injury induced by 
the midline hydraulic impact injury model in CD-1 
mice could last from 1 h to the seventh day after 
TBI [25], which means that different strains of an-
imals and TBI modeling methods may have trig-
gered various progress changes in TBI-ALI. 

TREM-1 is involved in the inflammatory re-
sponse process of various diseases. TREM-1 in-
hibition has shown effective therapeutic effects 
in patients experiencing septic shock in a clinical 
phase two trial [26]. In septic mice, highly ex-
pressed TREM-1 caused severe lung tissue dam-
age and upregulated the levels of pro-inflamma-
tory factors [27]. Our study showed that increased 
TREM-1 protein expression is involved in TBI-ALI, 
supporting the use of TREM-1 as a biomarker for 
predicting ALI. In addition to amplifying inflam-
mation in a TLR-dependent manner, TREM-1 also 
accelerated pyroptosis by activating the inflam-
masome. Studies have confirmed that in a  rat 
model of subarachnoid hemorrhage, TREM-1 
could induce microglial pyroptosis via upregula-
tion of the NLRP3 inflammasome and promoting 
neuroinflammation [13, 28]. In Kerr’s study, TBI in-
duced expression of inflammatory factors and ac-
tivated inflammasome-induced pyroptosis, which 
primarily concentrated in type II alveolar epithelial 
cells [29]. Our research findings indicate that TBI 
results in pyroptosis in different cell types found in 
lung tissue. Interestingly, in macrophages specifi-
cally, the process of pyroptosis is associated with 
an increase in the expression of TREM-1. Howev-
er, after the administration of a TREM-1 inhibitor, 
lung tissue pathological damage and pyroptosis 

masome expression in lung tissue. Compared 
with that in the TBI + NS group, OD treatment 
markedly reduced the protein levels of NLRP3, 
ASC, caspase-1, IL-1β, and IL-18 (Figures 3 A–F) 
in the TBI+OD group. Moreover, OD considerably 
lowered the protein levels of GSDMD-FL and GSD-
MD-NT (Figures 3 G, H). Consistent results were 
found in the immunofluorescence assay. As pyro-
ptosis of macrophages is essential for the patho-
genesis of ALI, we focused on macrophages and 
observed an increase in the number of CD68-posi-
tive macrophages in lung tissue from TBI rats (Fig-
ure 3 I). OD reduced GSDMD expression in CD68 
positive macrophages (Figure 3 I). In addition, OD 
treatment reduced immune cell infiltration, alveo-
lar wall thickening, lung injury scores (Figures 3 J, 
K), lung wet/dry ratios, and BALF protein contents 
(Figures 3 L, M).

OD inhibited TREM-1 expression in AMs

Next, we explored the effect of OD on TREM-1  
expression in AMs. As expected, OD inhibited 
TREM-1 expression, as observed in immunohis-
tochemical results (Figure 4 A), lowered plasma 
sTREM-1 levels (Figure 4 B), and decreased TREM-1  
mRNA expression in AMs (Figure 4 C). Immuno-
fluorescent cells in bronchial fluid consistently 
exhibited decreased TREM-1 expression in AMs 
upon OD treatment (Figure 4 D).

Discussion
Our study showed that OD can help pro-

tect against TBI-ALI by inhibiting NLRP3 inflam-
masomes/pyroptosis in macrophages. Regarding 
the mechanism, we discovered that TREM-1 pro-
tein expression increases after TBI and that TREM-1  
activates NLRP3 inflammasome/pyroptosis in 
lung tissues, thereby worsening TBI-ALI. Further-
more, the protective effect of OD on TBI-ALI may 
be related to the inhibition of TREM-1 expression.

Excessively released inflammatory factors are 
crucial in development of TBI-ALI [23]. A study by 

Figure 1. L – Densitometric analysis of GSDMD-NT. N = 3. M - Immunofluorescence of GSDMD expression in lung 
tissue after TBI. Scale bar = 20 μm. Results were normalized to β-actin. The values are presented as mean ± stan-
dard deviation (SD). *P < 0.05, **P < 0.01, ***P < 0.001 vs. Sham group
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Figure 2. Inhibition of TREM-1 attenuated TBI-ALI. A – mRNA expression of TREM-1 in lung tissue at 24, 48, and 72 h  
post-TBI. N = 3. B – Representative western blots of TREM-1 in lung tissue at 24, 48, and 72 h post-TBI. C – Den-
sitometric analysis of TREM-1. N = 3. D – Immunohistochemical staining of TREM-1 at 48 h post-TBI. Scale bar =  
50 μm, N = 4. E – Representative western blots of pro-inflammatory cytokines IL-6, TNF-α, and HMGB1 in lung 
tissue at 24, 48, and 72 h post-TBI. Densitometric analysis of (F) IL-6, (G) TNF-α, and (H) HMGB1. N = 3. I – Rep-
resentative images of H&E-stained lung tissue from the sham group, TBI + NS group, and TBI + LP17 group are 
shown. Scale bar = 100 μm, N = 4. 
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were significantly alleviated. These observations 
suggest that TREM-1 could play a  role in the 
pathogenesis of TBI-ALI and highlight the thera-
peutic potential of TREM-1 inhibition in TBI-ALI.

Many studies have shown that 5-HT3R inhibi-
tors possess anti-inflammatory and immunomod-
ulatory properties [30]. Research has suggested 

that the inhibition of 5-HT3R can lead to a reduc-
tion in macrophage-mediated inflammatory re-
sponses in cases of sepsis [31]. In sepsis-induced 
neuroinflammation, 5-HT3R inhibitor reduces the 
release of pro-inflammatory cytokines in microglia 
[32]. In addition, 5-HT3R inhibitor has been report-
ed to alleviate the release of pro-inflammatory cy-

Figure 2. Cont. J – Lung injury scores based on histopathological staining of lungs. K – The wet/dry ratio of the lungs.  
N = 4. L – Total protein in the BALF. N = 4. M – Representative western blots of TREM-1 and NLRP3 inflammasome 
components. Densitometric analysis of (N) TREM-1, (O) NLRP3, (P) Cleaved caspase-1, (Q) ASC, (R) IL-1β, (S) IL-18. 
Results normalized to β-actin. N = 4–5. The values are presented as mean ± standard deviation (SD). *P < 0.05,  
**p < 0.01, ***p < 0.001 vs. Sham group. #P < 0.05, ##p < 0.01 vs. TBI + NS group
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Figure 3. Ondansetron reduces TBI-ALI in rats. A – Representative western blots of NLRP3 components. Densito-
metric analysis of (B) NLRP3, (C) Cleaved caspase-1, (D) ASC, (E) IL-18, and (F) IL-1β. Results normalized to β-actin, 
N = 4. G – Representative western blots of GSDMD protein expression. H – Densitometric analysis of GSDMD-NT. 
Results normalized to β-actin, N = 4. I – Representative images of lung tissue after immunostaining for CD68 and 
GSDMD. Scale bar = 50 μm, N = 4. 
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Figure 3. Cont. K – Lung injury scores following 
OD treatment. L – The wet/dry ratio of the lungs.  
N = 4. M – Total protein in the BALF. N = 4. The val-
ues presented as mean ± standard deviation (SD). 
*P < 0.05, **p < 0.01, ***p < 0.001 vs. sham group.  
#P < 0.05, ##p < 0.01 vs. TBI + NS group
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Figure 4. Ondansetron inhibits TREM-1 expression in alveolar macrophages. A – TREM-1 staining of bronchioles 
and alveoli in histology sections. Scale bar = 50 μm, N = 4. B – sTREM-1 plasma levels in sham group, TBI + NS 
group, and TBI + OD group. N = 4. C – TREM-1 mRNA expression after OD administration. N = 4. ***P < 0.001 vs. 
sham group. ###P < 0.001 vs. TBI + NS group
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Figure 4. Cont. D – Representative images of isolated AMs in BALF after immunostaining for CD68 and TREM-1. 
Scale bar = 50 μm. N = 3.The values are presented as mean ± standard deviation. ***P < 0.001 vs. sham group.  
###P < 0.001 vs. TBI + NS group
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tokines via the NLRP3 inflammasome to attenuate 
sepsis-induced ALI [33]. A study reported that OD, 
a 5-HT3R inhibitor commonly used in clinical prac-
tice, can modulate descending pain after TBI [15]. 
Our experimental results showed that OD allevi-
ated TBI-ALI by inhibiting NLRP3 activation and 
pyroptosis. Additionally, OD significantly inhibited 
TREM-1 expression in macrophages and lung tis-
sue, suggesting a potential role for TREM-1 in the 
effect of OD on TBI-ALI.

Our study has some limitations. First, the mech-
anism of the specific regulatory effect of TREM-1 
on NLRP3-related pyroptosis needs further study. 
Second, although our results suggest that TREM-1 
contributes to macrophage pyroptosis in lung tis-
sue after TBI, further investigation is needed to 
determine the expression and function of TREM-1  
in other cell types involved in this process. Finally, 
our research suggests that OD may protect against 
TBI-ALI by inhibiting TREM-1 expression in macro-
phages. However, further investigation is needed 
to determine the exact molecular mechanisms 
underlying this effect and to determine wheth-
er other cell types are involved. Regardless, our 
study confirmed that OD could alleviate TBI-ALI.  
As regards the mechanism, TREM-1 promotes 
TBI-ALI via the NLRP3-related pyroptosis pathway, 

and the protective effect of OD on TBI-ALI may be 
related to the inhibition of TREM-1-mediated py-
roptosis. Ondansetron and TREM-1 inhibitors may 
be promising therapeutic agents for the treat-
ment of TBI-ALI. While further research is needed 
to confirm the efficacy and safety of these treat-
ments in humans, the results of these studies pro-
vide a promising avenue for the development of 
effective therapies for TBI-ALI. 
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