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A b s t r a c t

Introduction: Characterized by vast heterogeneity, gastric cancer (GC) is one 
of the leading causes of cancer-related deaths. A specific prognostic model 
is necessary for the improvement of clinical treatment strategies. Hypoxia 
is a common feature in the tumor microenvironment that promotes tumor 
progression. However, the current evaluation of the hypoxic tumor immune 
microenvironment in GC is still inadequate.
Material and methods: With sequence data and single nucleotide variants 
data obtained from The Cancer Genome Atlas-STAD dataset as well as hypo
xia- and immune-related genes acquired from MsigDB and ImmPort, a hy-
poxia-immune-based gene signature of stomach adenocarcinoma (STAD) 
was built by Cox regression analysis. The risk score could be used as an 
independent prognostic factor. 
Results: The receiver operating characteristic curve and survival curve 
showed the accuracy of the model. Pearson correlation analysis showed 
that DUSP1, one of the hypoxia- and immune-related feature genes, was 
positively correlated with immune cell scores and immune-related function 
scores. In addition, low-risk group peers were found to be in higher immune 
infiltration status and had a  higher immunophenoscore as demonstrated 
by single-sample Gene Set Enrichment Analysis (GSEA), indicating a better 
response to immune checkpoint inhibitor (ICI) treatment among the low-risk 
group. q-PCR results showed that DUSP1, IGFBP1, CGB5, GPC3 and EGF were 
significantly highly expressed in STAD cells, while FAM3D and FGF8 were 
significantly down-regulated. 
Conclusions: Overall, our study not only paves the way for future studies 
focusing on hypoxia and the immune microenvironment but also improves 
STAD patients’ prognosis and their response to immunotherapy.

Key words: stomach adenocarcinoma, hypoxia, immune microenvironment, 
prognostic factor, immunotherapy.

Introduction

Gastric cancer (GC) is a highly invasive and heterogeneous malignancy 
that ranked 5th in cancer morbidity with over 1 million patients per year 
according to Global Cancer Statistics 2020 [1]. As the predominant histo-
logical subtype, stomach adenocarcinoma (STAD) accounts for 90–95% 
of GC. Most patients display no symptoms before the disease develops 
to a middle or even advanced stage, and only a handful of them are di-
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agnosed at an early stage. Despite breakthroughs 
in surgery, adjuvant chemotherapy and targeted 
therapy that reduced the GC mortality rate, the 
overall survival and quality of survival of advanced 
GC patients remain poor due to limited therapy 
and medication [2]. Hence, novel biomarkers and 
therapeutic targets are necessary to improve the 
prognosis of GC patients.

The tumor immune microenvironment (TIME) 
is the most important factor in the study of the 
immunotherapy response, and findings on im-
mune-related components and relevant genes are 
helpful enough to inspire new insights into the re-
search and development of immune checkpoint in-
hibitors (ICIs). Hypoxia is a common feature in the 
tumor microenvironment (TME), which can affect 
survival, proliferation, invasion, metastasis, drug 
resistance and angiogenesis of tumor cells by reg-
ulating cellular and biological activities [3]. It has 
been confirmed by numerous studies that there 
is a link between hypoxia and tumor immunology. 
Kung-Chun Chiu et al. [4] reported that HIF-1 (hy-
poxia-inducible factor-1, a key mediator of tumor 
metabolism, which is involved in tumor-related 
inflammatory signaling) can promote ENTPD2 (ec-
tonucleoside triphosphate diphosphohydrolase-2, 
a  family of nucleoside triphosphate-diphospho-
hydrogenase enzymes, which can slow cancer 
growth and improve the efficiency and efficacy of 
ICIs) expression, which enhances the progression 
of hepatocellular carcinoma and suppresses my-
eloid-derived cell differentiation. Meanwhile, the 
inhibition of ENTPD2 improves the ICI efficiency. 
Another study of GC conducted by Zhihua et al. [5] 
found that HIF-1 can inhibit M1 polarization and 
function of macrophages by inhibiting miR-30c 
(a member of the microRNA family, a tumor sup-
pressor in human cancers) expression to decrease 
mTOR (mechanistic target of rapamycin, an atypi-
cal protein kinase of the PI3K-related kinase family, 
which has a key role in various biological processes 
such as cell proliferation, survival, autophagy, me-
tabolism and immunity) activity as well as glycoly-
sis in macrophages in GC patients. Therefore, the 
exploration of hypoxia- and immune-related prog-
nostic markers in STAD would benefit the progno-
sis prediction and subsequent treatment of STAD 
patients.

We aimed to develop a novel model based on 
hypoxia- and immune-related genes to predict 
prognosis as well as immune infiltration of STAD 
patients. With relevant STAD data obtained in 
the public dataset (The Cancer Genome Atlas 
(TCGA)-STAD), hypoxia- and immune-related 
genes were analyzed, feature genes screened, 
prognostic models built, and the link between 
risk score and clinicopathological characteris-
tics as well as prognosis validated. In addition, 

the relationship between risk score and immune 
infiltration as well as mutation status were in-
vestigated to guide STAD treatment and improve 
prognosis.

Material and methods

Dataset collection

The TCGA-STAD cohort including 363 samples 
was downloaded from TCGA, among which there 
were 343 STAD tissue samples and 30 normal 
gastric tissue samples. In addition, single-nucle-
otide variants (SNV) and corresponding clinical 
data of STAD patients were downloaded as well. 
Hypoxia-related genes in STAD were obtained 
in MsigDB (https://www.gsea-msigdb.org/gsea/
msigdb/), while immune-related genes in STAD 
were retrieved from ImmPort (https://www.im-
mport.org).

Identification of differentially expressed 
genes related to hypoxia and immunity  
in STAD

To identify hypoxia- and immune-related dif-
ferentially expressed genes (DEGs) in STAD, the 
edgeR package [6] was used for differential ex-
pression analysis on STAD and normal samples 
in the TCGA-STAD cohort to acquire STAD-related 
DEGs (|logFC| > 1 and FDR < 0.05). Subsequently, 
by intersecting DEGs and hypoxia-related genes/
immune-related genes, the hypoxia- and im-
mune-related DEGs in STAD were identified for 
analysis. 

Building and validation of hypoxia-
immune-based prognostic model of STAD

Referring to the survival information of STAD 
samples retrieved from the TCGA-STAD cohort, 
those with survival time longer than 30 days were 
randomly split into training and validation sets in 
the ratio of 7:3. To select hypoxia- and immune- 
related genes that affect survival of STAD patients, 
univariate Cox regression analysis was performed 
on hypoxia- and immune-related genes in the 
training cohort using the R package survival [7]  
(p < 0.05). To prevent overfitting, the genes ac-
quired from univariate Cox regression under-
went LASSO regression using glmnet [8]. Ten-fold 
cross-validation yielded an optimal penalty pa-
rameter lambda (λ) to remove genes with high 
correlation and reduce model complexity. Multi-
variate Cox regression analysis was performed 
using the R package survival to obtain prognostic 
genes related to hypoxia and immunity in STAD. 
Based on the genes required, the prognostic pre-
diction model was built as follows: (Risk score = 
0.1968 × DUSP1 + 0.0545 × IGFBP1 + 0.0587 × 
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CGB5 – 0.0775 × FAM3D – 0.0991 × FGF8 + 0.0971 
× GPC3 + 0.0655 × EGF).

Risk score of the training cohort was calculat-
ed based on the prognostic prediction model. The 
sample cohort was divided into high- and low-risk 
groups according to the median. Combined with 
the survival time and risk score of the samples, 
the survival status of STAD patients was plotted 
using the R package ggplot2 [9]. Subsequently, the 
survival curve of patients in the high- and low-risk 
groups was plotted using the R package surviv-
al to evaluate prognostic differences. Finally, the 
R package timeROC [10] was used to draw the re-
ceiver operating characteristic (ROC) curve of risk 
score for predicting the 1-, 3-, and 5-year survival 
of STAD patients, the results of which were then 
validated in the validation set.

Validation of the independence of risk 
score

Both univariate and multivariate Cox regression 
analyses were performed based on clinicopatho-
logic characteristics, such as stage, gender, tumor 
(T), node (N), and metastasis (M). Finally, to eval-
uate the clinical value of risk score, nomograms 
were developed using rms [11] to predict 1-, 3-, 
and 5-year survival in STAD patients and calibra-
tion curves were drawn to assess the accuracy.

Gene Oncology and Kyoto Encyclopedia  
of Genes and Genomes functional 
enrichment analyses of DEGs

To investigate the differences in biological func-
tions and signaling pathways involved in the high- 
and low-risk groups, the package edgeR was used 
for differential expression analysis to obtain DEGs 
in the high- and low-risk groups. After that, these 
DEGs were subject to enrichment analysis using 
the R package clusterProfiler [12], and the most 
significantly enriched Gene Oncology (GO) terms 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways were selected with a threshold 
of p < 0.05.

Immune microenvironment analysis

The microenvironment has been proven to 
impact the prognosis of tumor patients. Single 
sample Gene Set Enrichment Analysis (ssGSEA) 
was performed using the R package GSVA to in-
vestigate TME differences in STAD patients of 
different risk scores, based on which the associa-
tion between immune infiltration status and risk 
score was analyzed. Subsequently, the correlation 
of hypoxia-related genes and immune cell scores 
as well as immune-related function scores were 
calculated, showing how hypoxia-related genes 
impact immune infiltration status.

Tumor mutation analysis  
and immunophenoscore

With gene mutation frequency of high- and 
low-risk groups calculated based on the muta-
tion data in the TCGA-STAD cohort, waterfall plots 
were drawn using the R package GenVisR [13] to 
present the mutational landscape of STAD pa-
tients. The χ2 test was used to determine the dif-
ferences in the top 5 gene mutation frequencies in 
both high- and low-risk groups. The immunophe-
noscore (IPS) of STAD patients were downloaded 
from the Tree Care Industry Association (TCIA) 
database for the comparison between high- and 
low-risk groups by using the t-test.

Cell culture

Human gastric mucosal epithelial cell (CTCC-
022-HUM) and human gastric adenocarcinoma 
epithelial cells NUGC-3 (CTCC-0488-Luc2) and AGS 
(CTCC-001-0038) were purchased from MEISEN  
CELL. All the above cell lines were cultured in 
RPMI-1640 medium supplemented with 10% fetal 
bovine serum at 37°C in a 5% CO

2 incubator.

Quantitative real-time polymerase chain 
reaction

Total RNA was extracted from cells using TRIzol 
reagent (Life Technologies, USA), and the concen-
tration of RNA was determined using a NanoDrop 
2000 system (Thermo Fisher Scientific, Inc., USA). 
Total RNA was reverse transcribed using Prime
Script RT Master Mix (Takara, P.R., Japan) accord-
ing to the kit instructions. The amount of mRNA 
expression was measured using the miScript 
SYBR Green PCR Kit (Qiagen, Germany). The ex-
pression levels of DUSP1, IGFBP1, CGB5, FAM3D, 
FGF8, and GPC3 were determined by quantitative 
real-time polymerase chain reaction (qRT-PCR) on 
a Bio-Rad CFX96 real-time PCR detection system 
(Bio-Rad Laboratories, Hercules, USA). β-actin 
was used as a standardized endogenous control. 
Results of the 2–ΔΔCt value were used to compare 
the relative gene expression between the control 
group and the experimental group. Primer se-
quences were as follows: DUSP1 [14] (Forward: 
5′-GCCACCATCTGCCTTGCTTACC-3′; Reverse: 5′-AT-
GATGCTTCGCCTCTGCTTCAC-3′), IGFBP1 [15] (For-
ward: 5′-TTGGGACGCCATCAGTACCTA-3′; Reverse: 
5′-TTGGCTAAACTCTCTACGACTCT-3′), CGB5 [16] 
(Forward: 5′-CGCTGTGGACTCAGGTGTGCTG-3′; 
Reverse: 5′-CGCTGTGGACTCAGGTGTGCTG-3′), 
FAM3D [17] (Forward: 5′-GTAAAAGCCCCTTTGAG-
CAGT-3′; Reverse: 5′-GGCCATCCCTCGTATTTGT-3′), 
FGF8 [18] (Forward: 5′-CCCCTTCGCAAAGCTCATC-3′; 
Reverse: 5′-CCCCTTCTTGTTCATGCAGA-3′), GPC3 
[19] (Forward: 5′-GTGCTTTGCCTGGCTACATC-3′; 
Reverse: 5′- TCCACGAGTTCTTGTCCATTC-3′), EGF 
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[20] (Forward: 5′-CAGGGAAGATGACCACCACT-3′; 
Reverse: 5′-CAGTTCCCACCACTTCAGGT-3′), β-actin 
[14] (Forward: 5′-CTCCATCCTGGCCTCGCTGT-3′; 
Reverse: 5′-GCTGTCACCTTCACCGTTCC-3′).

Results

Identification of hypoxia- and immune-
related prognostic genes in STAD patients

Hypoxic TME is associated with poor outcomes 
and survival. Hypoxic lesions are formed when in-
travascular oxygen delivery in tumor is insufficient 
to meet the metabolic needs of tumor cells. Genes 
expressed differently under this circumstance are 
known as hypoxia-related genes [21, 22]. Hypoxia 
affects tumor immunity by favoring immune eva-
sion and resistance [23]. Highly hypoxic TME also 
impairs the maturation and activity of dendritic 
cells (DCs) and natural killer (NK) cells [23]. A pos-
itive correlation was found between the hypoxic 
TME and metabolic changes in cells of the immune 
system [23]. These findings indicate that hypoxia 
regulation can be a  target in ICI therapy. We re-
trieved 401 hypoxia- and immune-related genes 
from MsigDB and ImmPort, respectively, and over-
lapped them with DEGs. Eventually, 243 hypoxia- 
and immune-related DEGs were obtained for sub-
sequent prognostic model construction (Figure 1).

Construction and evaluation of the STAD 
prognostic model

Tumor samples in the TCGA-STAD cohort were 
randomly split into the training set and validation 
set at the ratio of 7:3. Referring to both expression 
data of 243 candidate genes in the training set 

and the corresponding clinical information, sam-
ples with survival time > 30 days were screened. 
A  univariate Cox regression analysis screened  
29 candidate genes significantly associated with 
survival. Subsequently, the optimal penalty pa-
rameter λ was selected using ten-fold cross-vali-
dation. When λ = –3, the overfitting was relatively 
small and the complexity of the model was the 
lowest. Thirteen important candidate genes were 
finally selected out (Figures 2 A, B). After multivar-
iate Cox regression analysis, a 7-gene hypoxia-im-
mune-based signature was constructed for STAD 
prognosis (Figure 2 C). After calculating the risk 
score of each sample, samples in the training set 
were divided into high- and low-risk groups by the 
median risk score (Figure 3 A). According to the 
scatter plot of survival status, higher risk scores 
correlated with poorer survival status (Figure 3 B).  
The expression levels of prognostic signature 
genes in the high- and low-risk groups were pre-
sented using heat maps (Figure 3 C). In addition, 
better prognosis was found in low-risk groups 
(Figure 3D). Subsequently, 1-, 3-, and 5-year sur-
vival of STAD patients predicted by the risk score 
were plotted using ROC curves, with area under 
the curve (AUC) values of 0.66, 0.73, and 0.64, re-
spectively (Figure 3 E). The predictive performance 
of the risk score was proven. Later, we conduct-
ed validation in the validation set, and the trend 
was consistent with the validation set, with better 
outcomes for patients in the low-risk group (Fig-
ure 3 F). The AUC values of 1-, 3-, and 5-year curves 
were 0.71, 0.71, and 0.78, respectively (Figure 3 G). 
In general, an effective prognostic prediction mod-
el based on immune-related and hypoxia-related 
genes in STAD was constructed here.

Risk score can be an independent 
prognostic factor for STAD patients

Univariate and multivariate Cox regression 
analyses were conducted combined with risk 
score and clinicopathologic characteristics such 
as gender and stage. Univariate Cox regression 
analysis identified two independent prognostic 
factors for STAD: N and risk score (Figure 4 A). 
According to multivariate Cox regression analy-
sis, age, N, M, and risk score could be indepen-
dent prognostic factors (Figure 4 B). Overall, risk 
score may be an independent prognostic factor in 
STAD patients. Subsequently, after plotting a no-
mogram that predicted 1-, 3-, and 5-year surviv-
al (Figure 4 C), corresponding calibration curves 
were plotted and showed the high predictive ac-
curacy of the nomogram (Figures 4 D–F). Based 
on the above findings, the risk score obtained 
from the prognostic model containing 7 hypox-
ia- and immune-related genes could serve as an 
independent predictor.

Figure 1. UpSet plot of the screening of hypox-
ia- and immune-related prognostic genes in STAD 
patients
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Figure 2. Identification of hypoxia- and immune-related prognostic genes. A  – Survival-related genes in STAD 
when log λ approaches 0 in the LASSO Cox regression model. B – Selection interval of the penalty parameter λ for 
the minimum goodness-of-fit. C – Forest plot of multivariate Cox regression analysis of feature genes in the best 
prognostic model

Gene Oncology and Kyoto Encyclopedia of 
Genes and Genomes enrichment analyses

With 1340 DEGs yielded from the differential 
analysis, GO and KEGG enrichment analyses were 
performed. According to the GO analysis, most 
of these genes were enriched in receptor-ligand 
activity, collagen-containing extracellular matrix, 
muscle system process, signaling receptor activa-
tor activity, receptor activator activity, and axon 
development (Figure 5 A). KEGG analysis revealed 
enrichments in neuroactive ligand-receptor in-
teraction, cAMP signaling pathway, chemical car-

cinogenesis-receptor activation, calcium signaling 
pathway and vascular smooth muscle contraction 
(Figure 5 B).

Differential analysis of the tumor 
microenvironment

The tumor microenvironment is closely related 
to the progression and prognosis of cancer pa-
tients [24]. After detecting the infiltration level of 
immune cells in the TME of each STAD patient us-
ing ssGSEA, immune infiltration and immunocom-
petence differences between the two risk groups 
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Figure 3. Validation of the STAD hypoxia- and immune-related prognostic model. A – Distribution of the high- and 
low-risk group samples with the median risk score as the cut-off point. B – Scatterplot of risk score and survival 
status in the training set. C – Survival analysis of the high- and low-risk groups in the training set. D – Risk score 
was utilized to predict ROC curves of 1-, 3-, and 5-year survival of patients in the training set. E – Survival analysis 
of the high- and low-risk groups in the validation set. F – Risk score for predicting the ROC curves of 1-, 3-, and 
5-year survival of patients in the validation set
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Figure 3. Cont. F – Risk score for predicting the ROC curves of 1-, 3-, and 5-year survival of patients in the validation 
set
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were also compared. The results identified more 
immune-related components as well as higher im-
munocompetence in the low-risk group (Figures 6 
A–C). Subsequently, the correlation between risk 
score and immune function as well as immune 
cell scores was calculated. The results showed 
that risk score was strongly negatively correlated 
with APC_co_inhibition (APC: antigen presenting 
cell), MHC_class_I (MHC: major histocompatibility 
complex), T_cells_co-stimulation, APC_co_stim-

ulation, Th2_cells (T helper 2 cells), Cytolytic_ac-
tivity, Inflammation-promoting, Tfh (T follicular 
helper cells), Check-point, Th1_cells (T helper 1 
cells), pDCs (plasmacytoid dendritic cells), and 
T_cell_co-inhibition. This indicated that patients 
with a lower risk score are more likely to benefit 
from immunotherapy (Table I).

According to previous studies, DUSP1 inhibits 
ERK kinase activity, thereby preventing overacti-
vation of HIF-1, a key player in regulating oxygen 
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Figure 4. Cont. C – Nomogram predicting 1-, 3-, and 
5-year survival in STAD patients. D–F – Calibration 
curves of 1-, 3-, and 5-year survival

delivery in hypoxia tumor cells and metabolic ad-
aptation to hypoxia [25]. Hypoxia affects tumor 
immune status by facilitating immune evasion 
and resistance [23]. Therefore, here we calculated 
the correlation between DUSP1 and a  variety of 
immune-related cells and functions. DUSP1 was 
positively correlated not only with immune-relat-

ed cell scores such as Mast_cell and Neutrophils 
but also with immune-related function scores 
such as CCR and type_II_INF_REPONSE. These ob-
servations added weight to the finding that, via 
repressing hypoxia, DUSP1 may inhibit immune 
evasion and resistance of tumor cells to suppress 
cancer progression (Figures 7 A–D).
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Figure 5. Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of 
high- and low-risk groups. A – Bubble map of GO and KEGG enrichment analyses
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Tumor mutation analysis and IPS 
differences in high- and low-risk groups

The top 30 most frequently mutated genes, 
according to the SNV mutation data from the  
TCGA-STAD cohort, were selected to draw wa-
terfall plots in two risk groups in the validation 
set (Figures 8 A, B). According to the results, the 
high-risk group was identified with a higher mu-
tation frequency of the top 30 genes, with the 
top 5 genes being TP53, TTN, MUC16, LRP1B, and 
SYNE1. As for the low-risk group, five genes that 
topped the mutation frequency rank were TTN, 
TP53, ARID1A, MUC16, and SYNE1. Subsequently, 
we performed a χ2 test on the above-mentioned 
genes to investigate whether their mutant fre-
quency differed between the two groups. The 

results showed that the mutation frequencies of 
TTN and ARID1A were substantially elevated in 
the high-risk group (Table II).

The immunophenoscore is a measurement of 
how oncology patients respond to ICI therapy, 
and higher scores indicate a better response to 
immunotherapy. After downloading IPS of STAD 
patients from TCIA, we plotted differences be-
tween 4 IPSs across high- and low-risk groups. 
According to the results, IPS, IPS-CTLA4 blocker 
score, IPS-PD1/PDL1/PDL2 blocker score, and 
IPS-CTLA4/PD1/PDL1/PDL2 blocker score were 
substantially increased in the low-risk group 
(Figures 8 C–F). Thus, patients in the low-risk 
group were more likely to benefit from ICI treat-
ment.
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Figure 5. Cont. B – Bubble map of GO and KEGG enrichment analyses
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Validation of expression levels  
of prognostic signature genes in STAD

To verify whether prognostic signature genes 
were significantly different between STAD and 
normal gastric cells, we performed q-PCR analy-
sis. As expected, the expression levels of DUSP1, 
IGFBP1, CGB5, GPC3 and EGF in STAD cells were 
significantly higher than those in normal gastric 
cells, while the expression levels of FAM3D and 
FGF8 were significantly lower (Figure 9).

Discussion

The TME is a  complex network crucial to the 
development of cancer. Among elements within 
such a complex network, hypoxia is considered to 
be the factor most relevant to the tumor response 
[26]. Prevalent in most solid tumors, hypoxia has 
a  strong relationship with drug resistance and 
poor prognosis as it promotes local and system-
ic tumor progression by activating angiogenesis 
[27]. Furthermore, the hypoxic TME can suppress 
the efficacy of the immune response [28]. It has 
been demonstrated that the hypoxic TME can in-
activate immune effector cells and promote the 

activity of immunosuppressive cells, with such 
an immunosuppression state further enhanced 
by immune evasion and tumor cell adaptability 
to hypoxia [29–32]. Therefore, according to the 
characteristics of tumor hypoxia and immunity, 
this study retrieved relevant data from public da-
tabases and, by adopting bioinformatics analysis, 
built a STAD prognostic model related to hypoxia 
and immunity.

Hypoxia- and immune-related genes in STAD 
were analyzed and screened by bioinformatics 
methods in this study, which yielded a  total of 
7 prognostic feature genes (DUSP1, IGFBP1, CGB5, 
FAM3D, FGF8, GPC3 and EGF). Immune-related 
genes included CGB5, FAM3D, FGF8 and EGF. CGB5 
(chorionic gonadotropin-β5) is a  protein-coding 
gene that is mainly involved in invasive melanoma 
and ectopic pregnancy. Qin et al. [33] found that 
CGB5 is a critical gene in STAD patients’ progno-
sis prediction and is associated with a variety of 
immune cells. As a  member of the FAM3 family, 
FAM3D (Family with sequence similarity 3 mem-
ber D) is a member of the cytokine-like family and 
plays an important role in cell proliferation, and 
it has been proven to be associated with intesti-
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A

Figure 6. Single sample Gene Set Enrichment Analysis (ssGSEA) of high- and low-risk groups. A – Heat map depicts 
the expression of 29 immune cell gene sets in high- and low-risk groups. B – Violin plot of immune cell fraction 
differences in high- and low-risk groups. C – Violin plot of immunocompetence-related gene differences in high- 
and low-risk groups
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ed in anti-cancer therapy as targets to combat 
chemoresistance in many different malignancies. 
In a study conducted by Jomrich et al. [36], FGF8 
was found to be highly expressed in adenocarci-
noma of the esophagogastric junction and shorter 
overall survival was associated with higher FGF8 
expression. EGF and its receptors are crucial to 
tumor development. Li et al. [37] discovered that, 
in basal-like breast cancer, inhibition of the EGF 
signaling pathway enhances PD-L1 (programmed 
cell death-ligand 1, a type I transmembrane pro-
tein of 40  kDa, which promotes proliferation of 
T cells with antigen specificity) stability and the 
therapeutic effect of PD-1 (programmed death 1,  
an important immunosuppressive molecule) 
blockade, thus facilitating the tumor-infiltrating 
cytotoxic T-cell immune response. It can be seen 
that these biomarkers can be used to assess the 
extent of clinical disease progression. In future 
molecular or clinical studies, these markers may 
also have the potential to be used as therapeutic 
targets to improve the prognosis of patients with 

Table I. Correlation analysis of risk score with im-
mune cell scores and immune function score

Name Correlation P-value

APC co-inhibition 1.042e-04 –0.26

MHC class I 4.628e-04 –0.24

T cell co-stimulation 2.582e-03 –0.2

APC co-stimulation 4.68e-03 –0.19

Th2 cells 6.188e-03 –0.19

Cytolytic activity 6.793e-03 –0.18

Inflammation-promoting 2.102e-02 –0.16

Tfh 1.736e-02 –0.16

Check-point 2.757e-02 –0.15

Th1 cells 3.078e-02 –0.15

pDCs 3.544e-02 –0.14

T cell co-inhibition 4.71e-02 –0.14

Figure 7. Correlation analysis of DUSP1 with immune-related cell and function scores. A – type II INF reponse; B – 
Mast cell; C – neutrophils; D – CCR
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nal inflammation and notably highly expressed in 
gastrointestinal inflammation [34, 35]. Fibroblast 
growth factor (FGF) family genes are now includ-
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Figure 8. Tumor mutation analysis and IPS difference in high- and low-risk groups. A – Tumor mutation burden 
(TMB) waterfall plot of top 30 mutated genes in high-risk group. B – TMB waterfall plot of top 30 mutated genes 
in low-risk group
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various tumors, including gastric adenocarcinoma. 
In the clinical treatment setting, prognostic bio-
markers can also help to decide whether or how 
to aggressively pursue therapeutic interventions.

Two hypoxia-related genes used to build the 
prognostic model were DUSP1 and IGFBP1. DUSP 
(dual-specificity protein phosphatase1), a  sub-
family of the protein tyrosine phosphatase (PTP) 

superfamily, is a  negative regulator of HIF-1α 
[38]. It has been demonstrated that DUSP1 plays 
an important role in regulating cell proliferation, 
tumorigenesis and drug resistance. The CASC9-
EZH2-DUSP1 regulatory axis is confirmed to reg-
ulate p-ERK (ERK, extracellular signal-regulated 
kinase, belongs to the mitogen-activated protein 
kinase family and is responsible for fundamental 
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Table II. The χ2 test results of the top 5 genes 
ranked by mutation frequencies in the high- and 
low-risk groups

id χ2 p-value

TTN 6.32213 0.01192

TP53 0.16617 0.68354

ARID1A 7.78352 0.00527

MUC16 1.662 0.19733

SYNE1 2.67463 0.10196

LRP1B 0.51928 0.47115

cellular processes, including cell proliferation and 
differentiation) expression, thus promoting gefi-
tinib resistance in non-small cell lung cancer [39]. 
IGFBP (insulin-like growth factor-binding protein) 
is a series of cystine-rich proteins that can bind to 
IGFs in serum and regulate cell proliferation [40]. 
After analyzing IGFBP family genes in GC, Liu et al. 
[41] found that IGFBP1 was highly expressed in 
GC, and its higher expression level was associated 
with a shorter survival time. Xu et al. [15] found 
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Figure 9. The mRNA expression levels of DUSP1, 
IGFBP1, CGB5, GPC3, EGF, FAM3D and FGF8 in 
different cell lines were measured by qRT-PCR, 
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that IGFBP1 may regulate renal cell clear cell car-
cinoma progression and immune infiltration by 
mediating the biological function of monocytes. 
Thus, the hypoxia signature genes screened in this 
study are closely related to tumor immune infiltra-
tion as well as prognosis.

In recent years, immunotherapy has become 
more popular, since it can effectively treat cancer 
and help cancer patients by affecting the inter-
action between the human immune system and 
cancer [42]. Although the application of immuno-
therapy has been a great success in the treatment 
of various tumors, its efficacy is not ideal due to 
the limited response to immunotherapy. Hence, 
biomarkers indicating the response to immuno-
therapy are the focus of current studies. There is 
a  close link between tumor transformation and 
somatic mutations. Therefore, it is important to 
explore tumor mutational burden (TMB) and tu-
mor immune infiltration for the development of 
immunotherapy regimens and the prognosis of 
patients. Currently, a growing amount of research 
is focused on the relationship between TMB and 
tumor immune infiltration. Ren et  al. [43] ana-
lyzed data from GC patients in public databases 
using the TIDE algorithm and found that patients 
with low stromal cell infiltration scores had higher 
TMB, microsatellite instability, and sensitivity to 
ICIs. Wang et al. [44] found that, when using the 
PD-1 inhibitor toripalimab to treat advanced GC 
patients, the response rate was significantly high-
er in patients with high TMB (14.6 vs. 4.0 months, 
HR = 0.48, 96% CI: 0.24–0.96, p = 0.038), while 
PD-L1 expression was not associated with patient 
survival. In this study, we combined TMB score 
with tumor immune infiltration and found that 
patients with a low risk score had higher immune 
infiltration, immune activity and TMB. It indicat-
ed that immunotherapy may yield better results 
among GC patients with low risk scores, which 
was consistent with previous studies. However, 
hypoxia triggers a  series of events, such as pro-
moting tumor growth, enhancing tumor immune 
escape and stimulating tumor angiogenesis [45]. 
It has been found that hypoxia enhances HLA-G 
expression in tumors [46, 47]. HLA-G is a  mark-
er of tumor immune escape. Murdaca et al. [48] 
found that HLA-G expression corresponded to 
a lower poor survival rate in patients with stage III 
gastric adenocarcinoma, which may be related to 
immune escape mechanisms of cancer cells [49]. 
This may be one of the reasons for the failure of 
immunotherapy and chemoresistance in some 
cancer patients [50]. Exploiting tumor hypoxia 
may be a potential cancer treatment strategy. 

In summary, with data retrieved from public 
databases, this study analyzed hypoxia- and im-
mune-related genes in STAD patients and built 
a  7-gene prognostic model with stable predictive 

performance. The prognostic risk score of patients 
can act not only as an independent prognostic fac-
tor but also as a reference for patients receiving im-
munotherapy. At the same time, the feature genes 
of the prognostic model in this study are closely re-
lated to the occurrence and development of tumors 
and can be used as potential targets for STAD treat-
ment, which can be used as an entry point to con-
duct a more in-depth study of the pathogenesis of 
STAD. Unfortunately, there are still some limitations 
of this study. For instance, the retrospective data 
from public databases used in this study may affect 
the stability of the model due to inherent selection 
bias. Clinical data will subsequently be introduced 
through collaboration with other institutes to fully 
investigate the potential value of the 7-gene sig-
nature in clinical practice. Also, multi-prospective 
studies and in vivo and in vitro experiments are 
needed to deeply explore the link between risk 
score, TMB and immune infiltration to fully prove 
the accuracy of prognostic models.
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