CLINICAL RESEARCH
Lipid-lowering and anti-inflammatory effects of omega 3 ethyl esters and krill oil: a randomized, cross-over, clinical trial
More details
Hide details
Submission date: 2015-02-25
Final revision date: 2015-03-08
Acceptance date: 2015-03-23
Online publication date: 2016-05-18
Publication date: 2016-05-16
Arch Med Sci 2016;12(3):507-512
KEYWORDS
TOPICS
ABSTRACT
Introduction: Polyunsaturated fatty acids (PUFAs) derived from different sources could have different lipid-lowering effects in humans. The main aim of our study was to compare the short-term triglyceride-lowering efficacy of krill oil and purified omega 3 ethyl ester PUFAs in mildly overweight hypertriglyceridemic subjects.
Material and methods: This double-blind, randomized clinical trial was carried out in 25 moderately hypertriglyceridemic subjects (TG = 150–500 mg/dl). After a 4-week run-in, participants were allocated to treatment with similar pills containing omega 3 ethyl ester PUFAs 1000 mg twice a day vs. krill oil 500 mg twice a day. After 4 weeks of treatment, participants were asked to observe a 4-week wash-out period, and they were then assigned to the alternative treatment for a further period of 4 weeks.
Results: Although both PUFA sources were able to improve TG plasma levels, esterified omega 3 PUFAs were more efficacious than krill oil (p < 0.05). Nonetheless, only krill oil treatment was able to significantly improve high-density lipoprotein cholesterol and apolipoprotein AI levels, compared to both baseline (p < 0.05) and end of treatment with esterified omega 3 PUFAs (p < 0.05) values. Both treatments were able to significantly reduce high-sensitivity C-reactive protein (hs-CRP) levels from the baseline (p < 0.05), but krill oil improved it more efficaciously than esterified omega 3 PUFAs (p < 0.05).
Conclusions: Krill oil has lipid-lowering effects comparable with those obtained through a 4-fold higher dose of purified omega 3 ethyl ester PUFAs in mildly overweight hypertriglyceridemic subjects, while more efficaciously reducing hs-CRP.