NEUROLOGY / CLINICAL RESEARCH
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Alzheimer's disease (AD) is a neurodegenerative disease with neurogenic fiber tangles caused by amyloid-β protein plaques and tau protein hyperphosphorylation as the pathological manifestations. This study was based on multi-omics to investigate the mechanisms and immune characterization of AD.

Material and methods:
Based on bulk RNA-seq (GSE122063 and GSE97760), we screened potential biomarkers for AD by differential expression analysis and machine learning algorithms. Then, we elaborated the expression characteristics and immune functions of the above biomarkers by scRNA-seq (single-cell RNA sequencing) data analysis (GSM4996463 and GSM4996462) and immune infiltration analysis.

Results:
Five biomarkers (RBM3, GOLGA8A, ALS2, FSD2, and LOC100287628) were identified using machine learning algorithms. Single-cell analysis revealed distinct expression patterns of these biomarkers in astrocytes from AD samples compared to normal samples. Additionally, three key biomarkers were selected based on interaction networks, and the diagnostic models indicated high diagnostic efficacy for these biomarkers. Based on immune infiltration and correlation analyses, RBM3, GOLGA8A, and ALS2 were all highly correlated with CD8 T cell content in the immune microenvironment of AD.

Conclusions:
The biomarkers identified in this study demonstrate significant diagnostic potential for AD. Notably, the downregulation of RBM3 in astrocytes and the decreased presence of CD8 T cells infiltrating brain tissue are potential risk factors for AD.
REFERENCES (76)
1.
Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol 2021; 20: 68-80.
 
2.
Graff-Radford J, Yong KXX, Apostolova LG, et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol 2021; 20: 222-34.
 
3.
Grobler C, van Tongeren M, Gettemans J, Kell DB, Pretorius E. Alzheimer’s disease: a systems view provides a unifying explanation of its development. J Alzheimers Dis 2023; 91: 43-70.
 
4.
Papuć E, Rejdak K. The role of myelin damage in Alzheimer’s disease pathology. Arch Med Sci 2020; 16: 345-51.
 
5.
Castro A, Martinez A. Targeting beta-amyloid pathogenesis through acetylcholinesterase inhibitors. Curr Pharm Des 2006; 12: 4377-87.
 
6.
Mesulam MM. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J Comp Neurol 2013; 521: 4124-44.
 
7.
Liu AK, Chang RC, Pearce RK, Gentleman SM. Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol 2015; 129: 527-40.
 
8.
Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol Med Rep 2019; 20: 1479-87.
 
9.
Zhang P, Xu S, Zhu Z, Xu J. Multi-target design strategies for the improved treatment of Alzheimer’s disease. Eur J Med Chem 2019; 176: 228-47.
 
10.
Sweeney MD, Montagne A, Sagare AP, et al. Vascular dysfunction-The disregarded partner of Alzheimer’s disease. Alzheimers Dementia 2019; 15: 158-67.
 
11.
Irwin MR, Vitiello MV. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol 2019; 18: 296-306.
 
12.
Nebel RA, Aggarwal NT, Barnes LL, et al. Understanding the impact of sex and gender in Alzheimer’s disease: a call to action. Alzheimers Dementia 2018; 14: 1171-83.
 
13.
Mayeux R, Stern Y. Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2: a006239.
 
14.
Tarawneh R, Holtzman DM. The clinical problem of symptomatic alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med 2012; 2: a006148.
 
15.
de Wit NM, Mol K, Rodriguez-Lorenzo S, de Vries HE, Kooij G. The role of sphingolipids and specialized pro-resolving mediators in Alzheimer’s disease. Front Immunol 2021; 11: 620348.
 
16.
Newcombe EA, Camats-Perna J, Silva ML, Valmas N, Huat TJ, Medeiros R. Inflammation: the link between comorbidities, genetics, and Alzheimer’s disease. J Neuroinflamm 2018; 15: 276.
 
17.
Lin L, Zheng LJ, Zhang LJ. Neuroinflammation, gut microbiome, and Alzheimer’s disease. Mol Neurobiol 2018; 55: 8243-50.
 
18.
Cao JQ, Hou JW, Ping J, Cai DM. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol Neurodegener 2018; 13: 64.
 
19.
Lyketsos CG, Carrillo MC, Ryan JM, et al. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement 2011; 7: 532-9.
 
20.
Vercellino I, Sazanov LA. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol 2022; 23: 141-61.
 
21.
Ahola S, Mejias PR, Hermans S, et al. OMA1-mediated integrated stress response protects against ferroptosis in mitochondrial cardiomyopathy. Cell Metab 2022; 34: 1875-91.e7.
 
22.
Santos R, de Almodovar CR, Bulteau AL, Gomes CM. Neurodegeneration, neurogenesis, and oxidative stress. Oxid Med Cell Longev 2013; 2013: 730581.
 
23.
Yan MH, Wang XL, Zhu XW. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Rad Biol Med 2013; 62: 90-101.
 
24.
Manczak M, Mao PZ, Calkins MJ, et al. Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J Alzheimers Dis 2010; 20: S609-S31.
 
25.
Grivennikova VG, Vinogradov AD. Generation of superoxide by the mitochondrial Complex I. Biochim Biophys Acta 2006; 1757: 553-61.
 
26.
Tan S, Sagara Y, Liu Y, Maher P, Schubert D. The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 1998; 141: 1423-32.
 
27.
Area-Gomez E, Guardia-Laguarta C, Schon EA, Przedborski S. Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. J Clin Invest 2019; 129: 34-45.
 
28.
Cunnane SC, Trushina E, Morland C, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19: 609-33.
 
29.
Baik SH, Kang S, Lee W, et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab 2019; 30: 493-507.e6.
 
30.
Bai R, Guo J, Ye XY, Xie Y, Xie T. Oxidative stress: the core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res Rev 2022; 77: 101619.
 
31.
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic pathways and Alzheimer’s disease: probing therapeutic potential. Neurochem Res 2021; 46: 3103-22.
 
32.
Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 2016; 12: 719-32.
 
33.
Zhang S, Zhu Y, Lu J, et al. Specific binding of Hsp27 and phosphorylated Tau mitigates abnormal Tau aggregation-induced pathology. Elife 2022; 11: e79898.
 
34.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. Bmc Bioinformatics 2008; 9: 559.
 
35.
Stuart T, Butler A, Hoffman P, et al. Comprehensive Integration of Single-Cell Data. Cell 2019; 177: 1888-902.e21.
 
36.
Imbert V, Peyron JF. NF-kappa B in Hematological Malignancies. Biomedicines 2017; 5: 27.
 
37.
Chen ZC, Zhong CJ. Oxidative stress in Alzheimer’s disease. Neurosci Bull 2014; 30: 271-81.
 
38.
Leng FD, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 2021; 17: 157-72.
 
39.
Li QY, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 2018; 18: 225-42.
 
40.
Borst K, Dumas AA, Prinz M. Microglia: immune and non-immune functions. Immunity 2021; 54: 2194-208.
 
41.
Alexander SPH, Benson HE, Faccenda E, et al. The concise guide to pharmacology 2013/14: overview. Br J Pharmacol 2013; 170: 1449-58.
 
42.
Sacks D, Baxter B, Campbell BCV, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke 2018; 13: 612-32.
 
43.
Filardo EJ, Quinn JA, Bland KI, Frackelton AR Jr. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 2000; 14: 1649-60.
 
44.
Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 2005; 307: 1625-30.
 
45.
Barton M, Filardo EJ, Lolait SJ, Thomas P, Maggiolini M, Prossnitz ER. Twenty years of the G protein-coupled estrogen receptor GPER: Historical and personal perspectives. J Steroid Biochem Mol Biol 2018; 176: 4-15.
 
46.
Kumar A, Foster TC. G protein-coupled estrogen receptor: rapid effects on hippocampal-dependent spatial memory and synaptic plasticity. Front Endocrinol 2020; 11: 385.
 
47.
Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 2014; 20: 460-73.
 
48.
Pradeepkiran JA, Reddy PH. Defective mitophagy in Alzheimer’s disease. Ageing Res Rev 2020; 64: 101191.
 
49.
Swerdlow NS, Wilkins HM. Mitophagy and the Brain. Int J Mol Sci 2020; 21: 9661.
 
50.
Qiu Z, Zhang H, Xia M, et al. Programmed death of microglia in Alzheimer’s disease: autophagy, ferroptosis, and pyroptosis. J Prev Alzheimers Dis 2023; 10: 95-103.
 
51.
Colombo E, Farina C. Astrocytes: key regulators of neuroinflammation. Trends Immunol 2016; 37: 608-20.
 
52.
Fakhoury M. Microglia and astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol 2018; 16: 508-18.
 
53.
Sajja V, Hlavac N, VandeVord PJ. Role of glia in memory deficits following traumatic brain injury: biomarkers of glia dysfunction. Front Integr Neurosci 2016; 10: 7.
 
54.
Singh D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease J Neuroinflamm 2022; 19: 206.
 
55.
Wistow G. Cold shock and DNA binding. Nature 1990; 344: 823-4.
 
56.
Tian Y, Xia S, Ma M, Zuo Y. LINC00096 promotes the proliferation and invasion by sponging miR-383-5p and regulating RBM3 expression in triple-negative breast cancer. Onco Targets Ther 2019; 12: 10569-78.
 
57.
Zhu X, Yan J, Bregere C, et al. RBM3 promotes neurogenesis in a niche-dependent manner via IMP2-IGF2 signaling pathway after hypoxic-ischemic brain injury. Nat Commun 2019; 10: 3983.
 
58.
Badrani JH, Strohm AN, Lacasa L, et al. RNA-binding protein RBM3 intrinsically suppresses lung innate lymphoid cell activation and inflammation partially through CysLT1R. Nat Commun 2022; 13: 4435.
 
59.
Yan J, Goerne T, Zelmer A, et al. The RNA-binding protein RBM3 promotes neural stem cell (NSC) proliferation under hypoxia. Front Cell Dev Biol 2019; 7: 288.
 
60.
Nagaraj S, Zoltowska KM, Laskowska-Kaszub K, Wojda U. microRNA diagnostic panel for Alzheimer’s disease and epigenetic trade-off between neurodegeneration and cancer. Ageing Res Rev 2019; 49: 125-43.
 
61.
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-97.
 
62.
Zhang H, Liang JL, Chen N. The potential role of miRNA-regulated autophagy in Alzheimer’s disease. Int J Mol Sci 2022; 23: 7789.
 
63.
Sun C, Liu J, Duan F, Cong L, Qi X. The role of the micro-RNA regulatory network in Alzheimer’s disease: a bioinformatics analysis. Arch Med Sci 2022; 18: 206-22.
 
64.
Kikuchi M, Sekiya M, Hara N, et al. Disruption of a RAC1-centred network is associated with Alzheimer’s disease pathology and causes age-dependent neurodegeneration. Human Mol Genet 2020; 29: 817-33.
 
65.
Ghiam S, Eslahchi C, Shahpasand K, Habibi-Rezaei M, Gharaghani S. Exploring the role of non-coding RNAs as potential candidate biomarkers in the cross-talk between diabetes mellitus and Alzheimer’s disease. Front Aging Neurosci 2022; 14: 955461.
 
66.
Alamro H, Bajic V, Macvanin MT, et al. Type 2 diabetes mellitus and its comorbidity, Alzheimer’s disease: identifying critical microRNA using machine learning. Front Endocrinol 2023; 13: 1084656.
 
67.
Shields JM, Christy RJ, Yang VW. Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. J Biol Chem 1996; 271: 20009-17.
 
68.
Shields JM, Yang VW. Identification of the DNA sequence that interacts with the gut-enriched Krüppel-like factor. Nucleic Acids Res 1998; 26: 796-802.
 
69.
Pearson R, Fleetwood J, Eaton S, Crossley M, Bao S. Kruppel-like transcription factors: a functional family. Int J Biochem Cell Biol 2008; 40: 1996-2001.
 
70.
Kapoor N, Niu JL, Saad Y, et al. Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP. J Immunol 2015; 194: 6011-23.
 
71.
Yang HJ, Xi XX, Zhao B, Su ZX, Wang ZY. KLF4 protects brain microvascular endothelial cells from ischemic stroke induced apoptosis by transcriptionally activating MALATI. Biochem Biophys Res Commun 2018; 495: 2376-82.
 
72.
Li LH, Zi XH, Hou DR, Tu QY. Kruppel-like factor 4 regulates amyloid-beta (A beta)-induced neuroinflammation in Alzheimer’s disease. Neurosci Letters 2017; 643: 131-7.
 
73.
Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal 2012; 2012: 756357.
 
74.
Doméné A, Cavanagh C, Page G, et al. Expression of phenotypic astrocyte marker is increased in a transgenic mouse model of Alzheimer’s disease versus age-matched controls: a presymptomatic stage study. Int J Alzheimers Dis 2016; 2016: 5696241.
 
75.
Jorfi M, Maaser-Hecker A, Tanzi RE. The neuroimmune axis of Alzheimer’s disease. Genome Med 2023; 15: 6.
 
76.
Unger MS, Li E, Scharnagl L, et al. CD8(+) T-cells infiltrate Alzheimer’s disease brains and regulate neuronal- and synapse-related gene expression in APP-PS1 transgenic mice. Brain Behav Immun 2020; 89: 67-86.
 
eISSN:1896-9151
ISSN:1734-1922
Journals System - logo
Scroll to top