CLINICAL RESEARCH
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
This study aimed to compare the effectiveness of two methods for non-invasive mechanical ventilation in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) – using a helmet interface with a flow meter and positive end-expiratory pressure valve versus a traditional mechanical ventilator.

Material and methods:
We conducted a single-center randomized clinical trial involving 100 adult SARS-CoV-2 patients in a specialized private hospital. Participants were randomly assigned to two groups: one using the helmet interface with a flow meter and positive end-expiratory pressure valve and the other employing conventional mechanical ventilation. Our study included participant selection, blood gas analysis, assessment of respiratory rate, peripheral oxygen saturation, modified Borg scale scores, and a visual analog scale.

Results:
The study showed no significant difference in intubation rates between the mechanical ventilation (54.3%) and helmet interface with flow meter and positive end-expiratory pressure valve (46.8%) groups (p = 0.37). Additionally, the helmet group had a shorter average duration of use (3.4 ±1.6 days) compared to the mechanical ventilation group (4.0 ±1.9 days). The helmet group also had a shorter average hospitalization duration (15.9 ±7.9 days) compared to the mechanical ventilation group (17.1 ±9.5 days).

Conclusions:
This single-center randomized clinical trial found no statistically significant differences between the two methods of non-invasive ventilation. Implications for clinical practice: using the helmet interface with the flow meter and positive end-expiratory pressure valve can simplify device installation, potentially reducing the need for intubation, making it a valuable tool for nurses and physiotherapists in daily clinical practice.

 
REFERENCES (39)
1.
World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Geneva. 2020. Available from: https://covid19.who.int/info.
 
2.
Ministério da Saúde. Boletim Epidemiológico Especial Doença pelo Novo Coronavírus - COVID-19. 2021 Aug. Available fromhttps://www.gov.br/saude/pt-br/media/pdf/2021/agosto/20/boletim_epidemiologico_covid_76 final20ago.pdf/view.
 
3.
Ministério da Saúde, Fundação Oswaldo Cruz. Boletim Observatório Covid-19. 2021 Mar. Available: https://portal.fiocruz.br/obse....
 
4.
Holanda MA, Pinhiero BV. COVID-19 pandemic and mechanical ventilation: facing the present, designing the future. J Brasil Pneumol 2020; 46: e20200282.
 
5.
Ing RJ, Bills C, Merritt G, Ragusa R, Bremmer RM, Bellia F. Role of helmet-delivered noninvasive pressure support ventilation in COVID-19 Patients. J Cardiothor Vasc Anesth 2020; 34: 2575-9.
 
6.
Navalesi P, Maggiore SM. Positive end-expiratory pressure. In: Principles and Practice of Mechanical Ventilation. 3rd edn. Tobin MJ (ed.). McGraw-Hill Companies, New York, USA 2013.
 
7.
Chiumello D, Pelosi P, Eleonora C, et al. Noninvasive positive pressure ventilation delivered by helmet vs. standard face mask. Intensive Care Med 2003; 29: 1671-9.
 
8.
Cosentini R, Brambilla AM, Aliberti S, et al. Helmet continuous positive airway pressure vs oxygen therapy to improve oxygenation in community-acquired pneumonia: a randomized, controlled trial. Chest 2010; 138: 114-20.
 
9.
Brambilla AM, Aliberti S, Prina E, et al. Helmet CPAP vs. oxygen therapy in severe hypoxemic respiratory failure due to pneumonia. Intensive Care Med 2014; 40: 942-9.
 
10.
Squadrone V, Coha M, Cerutti E, et al. Continuous positive airway pressure for treatment of postoperative hypoxemia: a randomized controlled trial. JAMA 2005; 293: 589-95.
 
11.
Squadrone V, Massaia M, Bruno B, et al. Early CPAP prevents evolution of acute lung injury in patients with hematologic malignancy. Intensive Care Med 2010; 36: 1666-74.
 
12.
Ferioli M, Cisternino C, Leo V, Pisani L, Palange P, Nava S. Protecting healthcare workers from SARS-CoV-2 infection: practical indications. European Respir Rev 2020; 29: 200068.
 
13.
Scandroglio M, Piccolo U, Mazzone E, et al. Use and nursing of the helmet in delivering non invasive ventilation. Minerva Anestesiol 2002; 68: 475-80.
 
14.
Crimi C, Noto A, Princi P, Esquinas A, Nava S. A European survey of noninvasive ventilation practices. European Respir J 2010; 36: 362-9.
 
15.
Patroniti N, Foti G, Manfio A, Coppo A, Bellani G, Pesenti A. Head helmet versus face mask for non-invasive continuous positive airway pressure: a physiological study. Intensive Care Med 2003; 29: 1680-7.
 
16.
Rodriguez AME, Papadakos PJ, Carron M, Consentini R, Chiumello D. Clinical review: helmet and non-invasive mechanical ventilation in critically ill patients. Critical Care 2013; 17: 223.
 
17.
Taccone P, Hess D, Caironi P, Bigatello LM. Continuous positive airway pressure delivered with a “helmet”: effects on carbon dioxide rebreathing. Critical Care Med 2004; 32: 2090-6.
 
18.
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382: 1708-20.
 
19.
Cunningham D, Robbins P, Wolff C. Integration of respiratory responses to change in alveolar partial and pressures of CO2 and O2 and in arterial pH. In: Cherniack NS, Widdcombe JG, editors. Handbook of Physiology. The Respiratory System, Control of Breathing. Washington, DC: American Physiological Society, 1986; 475-528.
 
20.
Richardson A, Killen A. How long do patients spend weaning from CPAP in critical care? Intensive Crit Care Nursing 2006; 22: 206-13.
 
21.
Poston JT, Patel BK, Davis AM. Management of critically ill adults with COVID-19. JAMA 2020; 323: 1839-41.
 
22.
Grieco DL, Menga LS, Cesarano M, et al. Effect of helmet noninvasive ventilation vs high-flow nasal oxygen on days free of managing the respiratoryin patients with COVID-19 and moderate to severe hypoxemic respiratory failure: the HENIVOT randomized clinical trial. JAMA 2021; 325: 1731-43.
 
23.
Associação de Medicina Intensiva Brasileira; Sociedade Brasileira de Pneumologia e Tisiologia. Diretrizes brasileiras de ventilação mecânica. Jornal Brasileiro de Pneumologia. p. 5. 2013. Disponível em: https://www.amib.org.br/filead....
 
24.
Sociedade Brasileira de Pneumologia e Tisiologia. II Consenso sobre Doença Pulmonar Obstrutiva Crônica - DPOC. J Brasil Pneumol 2004; 30: 1-5.
 
25.
Ely EW, Truman B, Shintani A, et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA 2003; 289: 2983-91.
 
26.
Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 14: 377-81.
 
27.
Flynn D, Van Schaik P, Van Wersch A. A comparison of multi-item likert and visual analogue scales for the assessment of transactionally defined coping function1. European J Psychol Assess 2004; 20: 49-58.
 
28.
Patel BK, Wolfe KS, Pohlman AS, Hall JB, Kress JP. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2016; 315: 2435-41.
 
29.
Radovanovic D, Rizzi M, Pini S, Saad M, Chiumello DA, Santus P. Helmet CPAP to treat acute hypoxemic respiratory failure in patients with COVID-19: a management strategy proposal. J Clin Med 2020; 9: 1191.
 
30.
Harari SA, Vitacca M, Blasi F, Centanni S, Santus PA, Tarsia P. Managing the respiratory care of patients with COVID-19. Italian Thoracic Society - Associazione Italiana Pneumologi Ospedalieri - Societa Italiana Di Pneumologia. 2020. Available: http://www.aiponet.it.
 
31.
Ministério da Saúde (BR), Conitec. Diretrizes Brasileiras para Tratamento Hospitalar do Paciente com COVID-19. 2021. Available: http://conitec.gov.br/images/C....
 
32.
Ashish A, Unsworth A, Martindale J, et al. CPAP management of COVID-19 respiratory failure: a first quantitative analysis from an inpatient service evaluation. BMJ Open Respir Res 2020; 7: e000692.
 
33.
Ranzani OT, Bastos L, Gelli J, et al. Characterisation of the first 250,000 hospital admissions for COVID-19 in Brazil: a retrospective analysis of nationwide data. Lancet Respir Med 2021; 9: 407-18.
 
34.
Grieco DL, Menga LS, Eleuteri D, Antonelli M. Patient self-inflicted lung injury: implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support. Minerva Anestesiol 2019; 85: 1014-23.
 
35.
Morais CC, Koyama Y, Yoshida T, et al. High positive end-expiratory pressure renders spontaneous effort noninjurious. Am J Respir Crit Care Med 2018; 197: 1285-96.
 
36.
Hill, Nicholas S. Noninvasive interfaces: sould we go to helmets. Crit Care Med 2004; 32: 2162-3.
 
37.
Longhini F, Colombo D, Pisani L, et al. Efficacy of ventilator waveform observation for detection of patient-ventilator asynchrony during NIV: a multicentre study. ERJ Open Res 2017; 3: 00075-2017.
 
38.
Al Otair HA, BaHammam AS. Ventilator- and interface-related factors influencing patient-ventilator asynchrony during noninvasive ventilation. Ann Thorac Med 2020; 15: 1-8.
 
39.
Ministério Público do Estado de São Paulo. Procedimento MPC n.º 10/040/20. Distribuição por dependência ao Relator do processo eTC n.º 13441.989.20-9. Disponível em: http://e-processo.tce.sp.gov.b....
 
eISSN:1896-9151
ISSN:1734-1922
Journals System - logo
Scroll to top