NEUROLOGY / EXPERIMENTAL RESEARCH
Adipose tissue-derived mesenchymal stem cells have better restorative capacity than bone marrow-derived cells in a cerebellar ataxic rat model
More details
Hide details
1
Department of Physiology, Faculty of Medicine, Suez Canal University, Egypt
2
Department of Histology, Faculty of Medicine, Suez Canal University, Egypt
Submission date: 2019-09-22
Final revision date: 2020-01-10
Acceptance date: 2020-02-02
Online publication date: 2020-11-13
Publication date: 2025-02-28
Arch Med Sci 2025;21(1):298-312
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Regenerative treatment using stem cells represents a potentially effective therapy for cerebellar ataxia (CA). We compared the therapeutic potential of adipose tissue stem cells (ASCs) and bone marrow mesenchymal stem cells (BM-MSCs) in a rodent monosodium glutamate (MSG)-induced CA cell (BM-MSC) model.
Material and methods:
Female Wistar rats (n = 40) were equally divided into a saline-treated control group and 3 MSG-induced CA groups randomly treated with either saline, or 1 × 106 ASCs or BM-MSCs. We assessed the following: 1) cerebellar motor functions in vivo (by Rotarod test, open-field test, and Quantitative gait analysis); 2) cerebellar histological architecture; and 3) cerebellar immunohistochemical examination of the Bax/Bcl-2 ratio as in indicator of apoptosis, and the levels of vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1) as neuroprotective factors.
Results:
Treatment with either of the MSCs improved MSG-induced poor motor performance, restored the disrupted Purkinje cell layer, decreased neuronal apoptosis and enhanced cerebellar VEGF and IGF-1 levels observed in CA rats. Adipose tissue stem cells showed superiority over BM-MSCs in the improvement of some motor performance parameters and cerebellar VEGF and IGF-1 levels.
Conclusions:
In conclusion, both stem cell types induced structural, physiological, and biochemical improvement, with ASCs being best for treatment of CA.
REFERENCES (76)
1.
Farghaly WM, El-Tallawy HN, Shehata GA, Rageh TA, Hakeem NA, Abo-Elfetoh NM. Population-based study of acquired cerebellar ataxia in Al-Kharga district, New Valley, Egypt. Neuropsychiatr Dis Treat 2011; 7: 183-7.
2.
Braga-Neto P, Pedroso J, Kuo S, et al. Current concepts in the treatment of hereditary ataxias. Arq Neuropsiquiatr 2016; 74: 244-52.
3.
Reimers D, Osuna C, Gonzalo-Gobernado R, et al. Liver growth factor promotes the survival of grafted neural stem cells in a rat model of Parkinson’s disease. Curr Stem Cell Res Ther 2012; 7: 15-25.
4.
Sullivan MO, Gordon-Evans WJ, Fredericks LP, et al. Comparison of mesenchymal stem cell surface markers from bone marrow aspirates and adipose stromal vascular fraction sites. Front Vet Sci 2015; 2: 82.
5.
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells.
6.
Science 1999; 284: 143-7.
7.
Ra JC, Shin IS, Kim SH, et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev 2011; 20: 1297-308.
8.
Marmolino D, Manto M. Past, present and future therapeutics for cerebellar ataxias. Curr Neuropharmacol 2010; 8: 41-61.
9.
Elman JS, Li M, Wang F, Gimble JM, Parekkadan B. A comparison of adipose and bone marrow-derived mesenchymal stromal cell secreted factors in the treatment of systemic inflammation. J Inflamm 2014; 11: 1.
10.
Rasmussen JG, Frobert O, Holst-Hansen C, et al. Comparison of human adipose-derived stem cells and bone marrow derived stem cells in a myocardial infarction model. Cell Transplant 2014; 23: 195-206.
11.
Gutiérrez-Fernández M, Rodríguez-Frutos B, Ramos-Cejudo J, et al. Effects of intravenous administration of allogenic bone marrow-and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther 2013; 4: 11.
12.
Polisetti N, Chaitanya VG, Babu PP, Vemuganti GK. Isolation, characterization and differentiation potential of rat bone marrow stromal cells. Neurol India 2010; 58: 201-8.
13.
Ailhaud G, editor. Adipose Tissue Protocols. Totowa (New Jersey): Humana Press; 2001.
14.
Rossi M, Perez-Lloret S, Doldan L, et al. Autosomal dominant cerebellar ataxias: a systematic review of clinical features. Eur J Neurol 2014; 21: 607-15.
15.
Pavlovic V, Pavlovic D, Kocic G, Sokolovic D, Sarac M, Jovic Z. Ascorbic acid modulates monosodium glutamate induced cytotoxicity in rat thymus. Bratisl Lek Listy 2009; 110: 205-9.
16.
Korayem HE, Abdo M, Naim MM, Yones SE, Hosny S. Potential therapeutic effect of hematopoietic stem cells in adult female rats subjected to cerebellar damage by monosodium glutamate. J Neurol Neurophysiol 2014; 5: 240.
17.
Ameen AM, Elkazaz AY, Mohammad HMF, Barakat BM. Anti-inflammatory and neuroprotective activity of boswellic acids in rotenone parkinsonian rats. Can J Physiol Pharmacol 2017; 95: 819-29.
18.
Abo-Grisha N, Essawy S, Abo-Elmatty D, Abdel-Hady Z. Effects of intravenous human umbilical cord blood CD34+ stem cell therapy versus levodopa in experimentally induced Parkinsonism in mice. Arch Med Sci 2013; 6: 1138-51.
19.
Karadayian AG, Cutrera RA. Alcohol hangover: type and time-extension of motor function impairments. Behav Brain Res 2013; 247: 165-73.
20.
McGoey TN, Reynolds JN, Brien JF. Chronic prenatal ethanol exposure-induced decrease of guinea pig hippocampal CA1 pyramidal cell and cerebellar Purkinje cell density. Can J Physiol Pharmacol 2003; 81: 476-84.
21.
Cook HC, Stirling RW. Manual of Histological Techniques and their Diagnostic Application. Churchill Livingstone; 1994.
22.
Bek K, Oksal A, Demircin G, et al. Renal BCL-2/bax expression in childhood Henoch-Schönlein nephritis: prognostic importance? Turk J Med Sci 2013; 43: 606-10.
23.
Wahyuni ED, Situmorang CC, Yueniwati Y, Barlianto W, Dwijayasa PM. Combination of vitamin C and E modulated monosodium glutamate-induced endometrial toxicily in female Wistar rats. Asian Pac J Rep 2014; 3: 106-9.
24.
Bruckner JV, Ramanathan R, Lee KM, Muralidhara S. Mechanisms of circadian rhythmicity of carbon tetrachloride hepatotoxicity. J Pharmacol Exp Ther 2002; 300: 273-81.
25.
Sayed HY, Abd-Elhalim DM, Hussain MA, Korayem HE. Monosodium glutamate-induced cerebellar toxicity; possible role of nitric oxide in adult albino rats. J Am Sci 2016; 12.
26.
Onaolapo OJ, Onaolapo AY, Akanmu MA, Olayiwola G. Foraging enrichment modulates open field response to monosodium glutamate in mice. Ann Neurosci 2015; 22: 162-70.
27.
Lambert CS, Philpot RM, Engberg ME, Johns BE, Kim SH, Wecker L. Gait analysis and the cumulative gait index (CGI): translational tools to assess impairments exhibited by rats with olivocerebellar ataxia. Behav Brain Res 2014; 274: 334-43.`.
28.
Beppu H, Takayanagi N, Tomita Y, et al. Improvement of gait and coordinated movement by forced gait training in cerebellar ataxic B6-wob/t mice. Jap J Compr Rehabil Sci 2015; 6: 64-70.
29.
Ilg W, Golla H, Thier P, Giese MA. Specific influences of cerebellar dysfunctions on gait. Brain 2007; 130: 786-98.
30.
Pisotta I, Molinari M. Cerebellar contribution to feedforward control of locomotion. Front Hum Neurosci 2014; 8: 475.
31.
Eweka AO, Om’Iniabohs FA, Adjene JO. Histological studies of the effects of monosodium glutamate on the stomach of adult Wistar rats. Ann Biomed Sci 2007; 6: 45-52.
32.
Prastiwi D, Djunaidi A, Partadiredja G. High dosage of monosodium glutamate causes deficits of the motor coordination and the number of cerebellar Purkinje cells of rats. Hum Exp Toxicol 2015; 34: 1171-9.
33.
Wang CJ, Hu CP, Xu KP, et al. Protective effect of selaginellin on glutamate-induced cytotoxicity and apoptosis in differentiated PC12 cells. Naunyn Schmiedebergs Arch Pharmacol 2010; 381: 73-81.
34.
Garman RH. Histology of the central nervous system. Toxicol Pathol 2011; 39: 22-35.
35.
Slemmer JE, De Zeeuw CI, Weber JT. Don’t get too excited: mechanisms of glutamate-mediated Purkinje cell death. Prog Brain Res 2005; 148: 367-90.
36.
Gao M, Zhang WC, Liu QS, Hu JJ, Liu GT, Du GH. Pinocembrin prevents glutamate-induced apoptosis in SH-SY5Y neuronal cells via decrease of bax/BCL-2 ratio. Eur J Pharmacol 2008; 591: 73-9.
37.
Abass M, El-Haleem MRA. Evaluation of monosodium glutamate induced neurotoxicity and nephrotoxicity in adult male albino rats. J Am Sci 2011; 7: 264-76.
38.
Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta 2011; 1813: 521-31.
39.
Ding Y, Zhu W, Kong W, Li T, Zou P, Chen H. Edaravone attenuates neuronal apoptosis in hippocampus of rat traumatic brain injury model via activation of BDNF/TrkB signaling pathway. Arch Med Sci 2021; 17: 514-22.
40.
Jones J, Jaramillo-Merchán J, Bueno C, Pastor D, Viso-León M, Martínez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 2010; 40: 415-23.
41.
Jones J, Estirado A, Redondo C, et al. Mesenchymal stem cells improve motor functions and decrease neurodegeneration in ataxic mice. Mol Ther 2015; 23: 130-8.
42.
Zhang MJ, Sun JJ, Qian L, et al. Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice. Brain Res 2011; 1402: 122-31.
43.
Zhong J, Deng J, Phan J, et al. Insulin-like growth factor-I protects granule neurons from apoptosis and improves ataxia in weaver mice. J Neurosci Res 2005; 80: 481-90.
44.
Edalatmanesh MA, Bahrami AR, Hosseini E, Hosseini M, Khatamsaz S. Neuroprotective effects of mesenchymal stem cell transplantation in animal model of cerebellar degeneration. Neurol Res 2011; 33: 913-20.
45.
Mendonça LS, Nobrega C, Hirai H, Kaspar BK, Pereira de Almeida L. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain 2014; 138: 320-35.
46.
Moon SM, Kim W, Chung JY, et al. Neuroprotective effects of adipose-derived stem cells are maintained for 3 weeks against ischemic damage in the rabbit spinal cord. Biomed Res Int 2014; 2014: 539051.
47.
Nakano N, Nakai Y, Seo TB, et al. Characterization of conditioned medium of cultured bone marrow stromal cells. Neurosci Letters 2010; 483: 57-61.
48.
Cova L, Armentero MT, Zennaro E, et al. Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson’s disease. Brain Res 2010; 1311: 12-27.
49.
Nicaise C, Mitrecic D, Pochet R. Brain and spinal cord affected by amyotrophic lateral sclerosis induce differential growth factors expression in rat mesenchymal and neural stem cells. Neuropathol Appl Neurobiol 2011; 37: 179-88.
50.
Wei X, Du Z, Zhao L, et al. IFATS collection: the conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. Stem Cells 2009; 27: 478-88.
51.
Lu S, Lu C, Han Q, et al. Adipose-derived mesenchymal stem cells protect PC12 cells from glutamate excitotoxicity-induced apoptosis by upregulation of XIAP through PI3-K/Akt activation. Toxicol 2011; 279: 189-95.
52.
Neuhuber B, Himes BT, Shumsky JS, Gallo G, Fischer I. Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res 2005; 1035: 73-85.
53.
Caplan A, Dennis J. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006; 98: 1076–84.
54.
Merrill MJ, Oldfield EH. A reassessment of vascular endothelial growth factor in central nervous system pathology. J Neurosurg 2005; 103: 853-68.
55.
Leu S, Lin YC, Yuen CM, et al. Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J Transl Med 2010; 8: 63.
56.
Li D, Fang Y, Wang P, Shan W, Zuo Z, Xie L. Autologous transplantation of adipose-derived mesenchymal stem cells attenuates cerebral ischemia and reperfusion injury through suppressing apoptosis and inducible nitric oxide synthase. Inter J Mol Med 2012; 29: 848-54.
57.
Wang LM, Ye YA, Zou LJ, Jing NH, Xu ZY. Moderate hypothermia prevents neural cell apoptosis following spinal cord ischemia in rabbits. Cell Res 2005; 15: 387.
58.
Zhao H, Yenari MA, Cheng D, Sapolsky RM, Steinberg GK. BCL-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J Neurochem 2003; 85: 1026-36.
59.
Lee H, Lee JK, Min WK, et al. Bone marrow-derived mesenchymal stem cells prevent the loss of Niemann-Pick type C mouse Purkinje neurons by correcting sphingolipid metabolism and increasing sphingosine-1-phosphate. Stem Cells 2010; 28: 821-31.
60.
Zhou J, Sun JJ, Yang HL, Cen JN. Transplantation of bone marrow mesenchymal stem cells inhibits apoptosis in injured rat spinal cord. Inter J Clin Exp Med 2016; 9: 5107-16.
61.
Joseph D’Ercole A, Ye P. Expanding the mind: insulin-like growth factor I and brain development. Endocrinology 2008; 149: 5958-62.
62.
Tolosa L, Mir M, Asensio VJ, Olmos G, Lladó J. Vascular endothelial growth factor protects spinal cord motoneurons against glutamate-induced excitotoxicity via phosphatidylinositol 3-kinase. J Neurochem 2008; 105: 1080-90.
63.
Sanchez A, Wadhwani S, Grammas P. Multiple neurotrophic effects of VEGF on cultured neurons. Neuropeptides 2010; 44: 323-31.
64.
Rosenstein JM, Mani N, Khaibullina A, Krum JM. Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical neurons. J Neurosci 2003; 23: 11036-44.
65.
Ogunshola OO, Antic A, Donoghue MJ, et al. Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem 2002; 277: 11410-5.
66.
Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays 2004; 26: 943-54.
67.
Yan X, Cheng X, He X, Zheng W, Yuan X, Chen H. Hypothermia enhances heme oxygenase 1-expressing mesenchymal stem cell-induced repair of cerebral hypoxia-ischemia. Arch Med Sci 2019. doi:10.5114/aoms.2019.86784.
68.
Ikegame Y, Yamashita K, Hayashi SI, et al. Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 2011; 13: 675-85.
69.
Hekman KE, Gomez CM. The autosomal dominant spinocerebellar ataxias: emerging mechanistic themes suggest pervasive Purkinje cell vulnerability. J Neurol Neurosurg Psychiatry 2015; 86: 554-61.
70.
Steiner B, Roch M, Holtkamp N, Kurtz A. Systemically administered human bone marrow-derived mesenchymal stem home into peripheral organs but do not induce neuroprotective effects in the MCAo-mouse model for cerebral ischemia. Neurosci Letters 2012; 513: 25-30.
71.
Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 2016; 7: 7.
72.
Leynik A, Gernavage KM, Mourad YS, et al. Stem cell delivery of therapies for brain disorders. Clin Translat Med 2014; 3: 24.
73.
Uhlendorf TL, Nuryyev RL, Kopyov AO, et al. Efficacy of two delivery routes for transplanting human neural progenitor cells (NPCs) into the spastic han-wistar rat, a model of ataxia. Cell Transplant 2017; 26: 259-69.
74.
Gutiérrez-Fernández M, Rodríguez-Frutos B, Alvarez-Grech J, et al. Functional recovery after hematic administration of allogenic mesenchymal stem cells in acute ischemic stroke in rats. Neurosci 2011; 175: 394-405.
75.
Parekkadan B, Milwid JM. Mesenchymal stem cells as therapeutics. Ann Rev Biomed Eng 2010; 12: 87-117.
76.
Liew A, O’Brien T. Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther 2012; 3: 28.